Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Dodis, Yevgeniy Lovett, Shachar Aggarwal, Divesh |
| Abstract | Non-malleable codes provide a useful and meaningful security guarantee in situations where traditional errorcorrection (and even error-detection) is impossible; for example, when the attacker can completely overwrite the encoded message. Informally, a code is non-malleable if the message contained in a modified codeword is either the original message, or a completely unrelated value. Although such codes do not exist if the family of "tampering functions" F is completely unrestricted, they are known to exist for many broad tampering families F. One such natural family is the family of tampering functions in the so called split-state model. Here the message m is encoded into two shares L and R, and the attacker is allowed to arbitrarily tamper with L and R individually. The split-state tampering arises in many realistic applications, such as the design of non-malleable secret sharing schemes, motivating the question of designing efficient non-malleable codes in this model. Prior to this work, non-malleable codes in the splitstate model received considerable attention in the literature, but were constructed either (1) in the random oracle model [16], or (2) relied on advanced cryptographic assumptions (such as non-interactive zero-knowledge proofs and leakage-resilient encryption) [26], or (3) could only encode 1-bit messages [14]. As our main result, we build the first efficient, multi-bit, information-theoretically-secure non-malleable code in the split-state model. The heart of our construction uses the following new property of the inner-product function 〈L;R〉 over the vector space $F^{n}_{p}$ (for a prime p and large enough dimension n): if L and R are uniformly random over $F^{n}_{p},$ and f, g: $F^{n}_{p}$ → $F^{n}_{p}$ are two arbitrary functions on L and R, then the joint distribution (〈L;R〉, 〈f(L), g(R)〉) is "close" to the convex combination of "affine distributions" {(U, aU + b) --- a, b ε $F_{p}\},$ where U is uniformly random in $F_{p}.$ In turn, the proof of this surprising property of the inner product function critically relies on some results from additive combinatorics, including the so called Quasi-polynomial Freiman-Ruzsa Theorem which was recently established by Sanders [29] as a step towards resolving the Polynomial Freiman-Ruzsa conjecture [21]. |
| Starting Page | 774 |
| Ending Page | 783 |
| Page Count | 10 |
| File Format | PDF MP4 |
| ISBN | 9781450327107 |
| DOI | 10.1145/2591796.2591804 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2014-05-31 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Content Type | Audio Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|