Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Jeong, Jina Park, Eungyu Han, Weon Shik Kim, Kue Young |
| Copyright Year | 2017 |
| Abstract | A subsample aggregating (subagging) regression (SBR) method for the analysis of groundwater data pertaining to trend-estimation-associated uncertainty is proposed. The SBR method is validated against synthetic data competitively with other conventional robust and non-robust methods. From the results, it is verified that the estimation accuracies of the SBR method are consistent and superior to those of other methods, and the uncertainties are reasonably estimated; the others have no uncertainty analysis option. To validate further, actual groundwater data are employed and analyzed comparatively with Gaussian process regression (GPR). For all cases, the trend and the associated uncertainties are reasonably estimated by both SBR and GPR regardless of Gaussian or non-Gaussian skewed data. However, it is expected that GPR has a limitation in applications to severely corrupted data by outliers owing to its non-robustness. From the implementations, it is determined that the SBR method has the potential to be further developed as an effective tool of anomaly detection or outlier identification in groundwater state data such as the groundwater level and contaminant concentration.Une méthode de régression par sous-échantillonnage et agrégation (subbaging) (SBR) pour l’analyse des données relatives aux eaux souterraines se rapportant à l’évaluation des tendances associée à l’incertitude est proposée. La méthode SBR est validée en considérant des données synthétiques de manière compétitive vis-à-vis de méthodes conventionnelles robustes et non robustes. A partir des résultats, on vérifie que les précisions estimées de la méthode SBR sont cohérentes et supérieures à celles des autres méthodes, et que les incertitudes sont estimées de manière raisonnable : les autres ne disposent pas d’option d’analyse des incertitudes. Pour avancer dans le processus de validation, des données réelles relatives aux eaux souterraines sont utilisées et analysées en les comparant au processus gaussien de régression (GPR). Dans tous les cas, la tendance et les incertitudes associées sont estimées de manière raisonnable à la fois par SBR et par GPR, indépendamment des données gaussiennes ou non gaussiennes biaisées. Cependant, on s’attend à ce que le GPR ait une limitation dans ses applications à des données fortement entachées de valeurs aberrantes en raison de sa non-robustesse. A partir des mises en œuvre, on détermine que la méthode SBR a un potentiel pour faire l’objet de développement en tant qu’outil efficace de détection d’anomalies ou d’identification de valeurs aberrantes dans des données relatives à l’état des eaux souterraines telles que le niveau piézométrique ou la concentration en contaminants.Se propone un método de regresión de agregación de submuestreos (SBR) para el análisis de datos de agua subterránea relacionados con la incertidumbre asociada a la estimación de tendencias. El método SBR se valida competitivamente frente a los datos sintéticos de otros métodos robustos y no robustos convencionales. A partir de los resultados, se verifica que las precisiones de estimación del método SBR son consistentes y superiores a las de otros métodos, y las incertidumbres son razonablemente estimadas; los otros no tienen la opción del análisis de incertidumbres. Además para validar, se emplean los datos reales del agua subterránea y se analizan comparativamente con la regresión del proceso gaussiano (GPR). En todos los casos, la tendencia y las incertidumbres asociadas son razonablemente estimadas tanto por SBR como por GPR, independientemente de los datos gaussianos sesgados o no gaussianos. Sin embargo, se espera que GPR tenga una limitación en aplicaciones a datos gravemente corrompidos por valores atípicos debido a su no robustez. A partir de las implementaciones, se determina que el método SBR tiene el potencial de ser desarrollado como una herramienta eficaz de detección de anomalías o identificación de valores atípicos en datos de agua subterránea tales como el nivel de agua subterránea y la concentración de contaminantes.本文提出了有关涉及趋势-估算不确定性分析地下水数据的子样品集聚(subagging) 回归法。相对于其它常规的强健的和非强健的方法,子样品集聚回归法经过了综合数据的验证。结果证实,子样品集聚回归法的估算精度始终如一,优于其它方法的估算精度,合理地估算了不确定性;其它方法没有不确定性选项。为了进一步进行验证,采用实际的地下水数据,并与高斯过程回归法对这些数据进行了对比分析。在所有情况中,无论是否高斯或者非高斯偏斜数据,利用子样品集聚回归法和高斯过程回归法对趋势和相关不确定性进行了合理估算。然而,预计高斯过程回归法在应用中对由于异常值的非-稳健性造成的严重损坏数据有局限。从实施的情况看,子样品集聚回归法作为地下水状况数据诸如地下水位和污染物含量异常探测或异常值识别的一个有效工具,具有进一步发展的潜力。Um método de regressão (RAS) por agregação de subamostra (subagging) foi proposto para a análise de dados de águas subterrâneas referentes à incerteza associada à estimativa de tendência. O método RAS foi validado contra dados sintéticos competitivamente com outros métodos convencionais robustos e não robustos. A partir dos resultados, verificou-se que as precisões de estimativa do método RAS foram consistentes e superiores às de outros métodos, e as incertezas foram razoavelmente estimadas; os demais não possuem opção de análise de incerteza. Para validar além, os dados de águas subterrâneas reais foram empregados e analisados comparativamente com a regressão de processo Gaussiano (RPG). Para todos os casos, a tendência e as incertezas associadas foram razoavelmente estimadas tanto pela RAS quanto pela RPG, independentemente de dados Gaussianos ou não Gaussianos. No entanto, espera-se que a RPG tenha uma limitação nas aplicações de dados gravemente corrompidos por dados discrepantes devido à sua não robustez. A partir das implementações, foi determinado que o método RAS tem potencial para ser desenvolvido como uma ferramenta eficaz de detecção de anomalias ou identificação de valores espúrios em dados de águas subterrâneas, tais como o nível das águas subterrâneas e a concentração de contaminantes. |
| Starting Page | 1491 |
| Ending Page | 1500 |
| Page Count | 10 |
| File Format | |
| ISSN | 14312174 |
| Journal | Hydrogeology Journal |
| Volume Number | 25 |
| Issue Number | 5 |
| e-ISSN | 14350157 |
| Language | Portuguese |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2017-03-30 |
| Publisher Institution | International Association of Hydrogeologists |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Groundwater monitoring Statistical modeling Subagging regression Gaussian process regression Non-Gaussian distribution Hydrogeology Hydrology/Water Resources Geology Water Quality/Water Pollution Geophysics/Geodesy Waste Water Technology Water Pollution Control Water Management Aquatic Pollution |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Water Science and Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|