Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Shrestha, Gaurav Uchida, Youhei Kuronuma, Satoru Yamaya, Mutsumi Katsuragi, Masahiko Kaneko, Shohei Shibasaki, Naoaki Yoshioka, Mayumi |
| Copyright Year | 2017 |
| Abstract | Development of a ground-source heat pump (GSHP) system with higher efficiency, and evaluation of its operating performance, is essential to expand the growth of GSHP systems in Japan. A closed-loop GSHP system was constructed utilizing a flowing (artesian) well as a ground heat exchanger (GHE). The system was demonstrated for space-heating and space-cooling of a room (area 126.7 m$^{2}$) in an office building. The average coefficient of performance was found to be 4.5 for space-heating and 8.1 for space-cooling. The maximum heat exchange rate was 70.8 W/m for space-heating and 57.6 W/m for space-cooling. From these results, it was determined that a GSHP system with a flowing well as a GHE can result in higher performance. With this kind of highly efficient system, energy saving and cost reduction can be expected. In order to assess appropriate locations for the installation of similar kinds of GSHP systems in Aizu Basin, a suitability map showing the distribution of groundwater up-flowing areas was prepared based on the results of a regional-scale three-dimensional analytical model. Groundwater up-flowing areas are considered to be suitable because the flowing well can be constructed at these areas. Performance evaluation of the GSHP system utilizing the flowing well, in conjunction with the prepared suitability map for its installation, can assist in the promotion of GSHP systems in Japan.Le développement d’un système de pompe à chaleur géothermique (GSHP) avec une efficacité plus élevée, et l’évaluation de ses performances opérationnelles, sont essentiels pour accroître le développement des systèmes GSHP au Japon. Un système GSHP en boucle fermée a été construit en utilisant un puits à écoulement (artésien) comme échangeur de chaleur (GHE). Le système a été démontré pour le chauffage et la climatisation pour une pièce (superficie de 126.7 m$^{2}$) dans un immeuble de bureaux. Le coefficient moyen de performance a été estimé à 4.5 pour le chauffage de l’espace et à 8.1 pour la climatisation froide de l’espace. Le taux maximal de taux d’échange de chaleur était de 70.8 W/m pour le chauffage de l’espace et de 57.6 W/m pour la climatisation. A partir de ces résultats, il a été déterminé qu’un système GSHP avec un puits à écoulement comme un GHE peut produire des performances plus élevées. Avec ce type de système hautement efficace, une économie d’énergie et une réduction des coûts peuvent être attendus. Afin d’évaluer les emplacements appropriés pour l’installation de systèmes similaires de type GSHP dans le bassin d’Aizu, une carte d’aptitude montrant la distribution des zones à écoulement d’eaux souterraines ascensionnels a été élaborée sur la base des résultats d’un modèle tridimensionnel analytique à l’échelle régionale. Les zones d’écoulement d’eaux souterraines ascendantes ont été considérées comme étant favorables du fait que des puits à écoulement peuvent être implantés dans ces zones. L’évaluation de la performance du système GSHP en utilisant les puits à écoulement, conjointement à la carte d’aptitude élaborée pour son installation, peut aider à la promotion des systèmes GSHP au Japon.El desarrollo de un sistema de bomba de calor de origen terrestre (GSHP) con mayor eficiencia y evaluación de su desempeño operacional es esencial para expandir el crecimiento de los sistemas de GSHP en Japón. Se construyó un sistema GSHP de circuito cerrado utilizando un pozo de flujo (artesiano) como un intercambiador de calor terrestre (GHE). El sistema se demostró para el calentamiento de espacios y el enfriamiento espacial de una habitación (área de 126.7 m$^{2}$) en un edificio de oficinas. Se encontró que el coeficiente de rendimiento promedio era de 4.5 para el calentamiento y de 8.1 para el enfriamiento del espacio. La tasa máxima de intercambio de calor fue de 70.8 W/m para el calentamiento y 57.6 W/m para el enfriamiento del espacio. A partir de estos resultados, se determinó que un sistema GSHP con un pozo de flujo como un GHE puede resultar en un mayor rendimiento. Con este tipo de sistema altamente eficiente, se puede esperar ahorro de energía y reducción de costos. Con el fin de evaluar los lugares adecuados para la instalación de tipos similares de sistemas de GSHP en la Cuenca de Aizu, se preparó un mapa de aptitud que muestra la distribución de las aguas subterráneas de las áreas con flujo ascendente, basado en los resultados de un modelo analítico tridimensional de escala regional. Se considera que las aguas subterráneas con flujo ascendente en el área son adecuadas porque el pozo de flujo puede ser construido en estas áreas. La evaluación del rendimiento del sistema de GSHP utilizando el pozo de flujo, junto con el mapa de aptitud preparado para su instalación, puede ayudar en la promoción de los sistemas de GSHP en Japón.地源热泵系统的高效开发以及其运行性能的评估对于发展日本地源热泵系统至关重要。利用自流井作为地热交换器建立了封闭环地源热泵系统。通过为一个办公楼一个房间(面积126.7平方米)提供空间加热和空间冷却展示了该系统。发现平均的性能系数为空间加热4.5,空间冷却为8.1。最大热交换率为空间加热70.8 W/m,空间冷却57.6 W/m。通过这些结果,确定以自流井作为地热交换器的地源热泵系统具有较高的性能。有了这种高效率的系统,可以节省能源和降低费用。为了评价在Aizu流域安装类似地源热泵系统的合适地点,根据区域尺度三维解析模型得到的结果绘制了显示地下水上升流地区分布的适宜性图。地下水上升流地区被认为是合适的区域,因为自流井可在这些地区建设。利用自流井加上绘制的地源热泵系统安装适宜性图进行的系统性能评估可对日本地源热泵系统的开发提供支持。日本における地中熱ヒートポンプ(GSHP)システムの普及のために、高効率システムの開発とその性能評価が重要である。本研究では、自噴井を熱交換井として利用したクローズドループGSHPシステムを構築し、事務室(面積126.7 m$^{2}$)の冷暖房実証運転を実施した。平均性能係数は、暖房運転時に4.5、冷房運転時に8.1であった。熱交換量は、暖房運転時に最大70.8 W/m、冷房運転時に最大57.6 W/mであった。この結果から、自噴井を利用したGSHPシステムが高効率であることが実証された。このようなシステムが省エネやコスト削減に繋がると期待される。また、会津盆地における同様なシステムの導入適地選定のために、3次元広域解析モデルの結果を基に自噴地域の分布を示す適地マップを作成した。地下水が上向きに流れる地域では、自噴井の構築が可能であるため、適地として考慮した。自噴井を利用したGSHPシステムの性能評価および導入適地マップの作成が日本におけるGSHPシステムの普及に貢献すると思われる。O desenvolvimento de um sistema de bomba de calor de fonte terrestre (BCFT) com alta eficiência, e avaliação de seu desempenho operacional, é essencial para expandir o crescimento de sistemas BCFT no Japão. Um sistema BCFT com circuito fechado foi construído utilizando um poço com fluxo (artesiano) como trocador de calor terrestre (TCT). O sistema foi demostrado para aquecimento e resfriamento de uma sala (área 126.7 m$^{2}$) em um prédio de escritórios. O coeficiente médio de desempenho foi de 4.5 para o aquecimento e 8.1 para resfriamento. A taxa máxima de troca de calor foi de 70.8 W/m para aquecimento e 57.6 W/m para resfriamento. A partir destes resultados, foi determinado que o sistema BCFT utilizando um poço com fluxo como TCT pode resultar em alto desempenho. Com este tipo de sistema altamente eficiente, a conservação de energia e redução de custos podem ser esperados. Para avaliar outros lugares para a instalação de sistemas BCFT similares na Bacia de Aizu, um mapa de adequabilidade mostrando a distribuição de áreas com águas subterrâneas com fluxo ascendente foi preparado baseado nos resultados de um modelo analítico tridimensional de escala regional. Áreas com águas subterrâneas com fluxo ascendente são consideradas adequadas pois o poço com fluxo pode ser construído nestas áreas. A avaliação do desempenho do sistema BCFT utilizando poços com fluxo, em conjunto com mapas de adequabilidade para a sua instalação, pode ajudar na promoção de sistemas BCFT no Japão. |
| Starting Page | 1437 |
| Ending Page | 1450 |
| Page Count | 14 |
| File Format | |
| ISSN | 14312174 |
| Journal | Hydrogeology Journal |
| Volume Number | 25 |
| Issue Number | 5 |
| e-ISSN | 14350157 |
| Language | Portuguese |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2017-02-04 |
| Publisher Institution | International Association of Hydrogeologists |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Ground-source heat pump system Groundwater flow Flowing well Performance Japan Hydrogeology Hydrology/Water Resources Geology Water Quality/Water Pollution Geophysics/Geodesy Waste Water Technology Water Pollution Control Water Management Aquatic Pollution |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Water Science and Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|