Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Yilmaz, M. Krein, P.T. |
| Copyright Year | 2008 |
| Description | Author affiliation: Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL (Yilmaz, M.; Krein, P.T.) |
| Abstract | This paper reviews the literature concerned with capabilities and limitations of finite element analysis (FEA) and magnetic equivalent circuit (MEC) analysis for electrical machine design. The most common known models are based on equivalent circuits and related analytical models, or on FEA. Analytical models use highly simplified magnetics, and have difficulty extending into saturation. FEA typically uses magnetic vector potential representations that model additional effects such as eddy currents, but requires detailed nonlinear models for saturation and hysteresis. MEC methods represent a third possibility for electrical machine analysis, based on permeance network models comprising reluctances and mmf sources. Advantages of the MEC method include reduced model complexity compared to FEA, enhanced accuracy compared to analytical approaches, ease of parameterization, methods for extension to 3-D capability, and fast computation time. One of the most significant concerns related to literature in this area is that very few papers report thorough comparisons between experimental measurements and simulation tools for electromechanical devices. Among those that do, even fewer compare electromechanical forces and torques. With less than 15 exceptions, the few papers providing such comparisons report ldquogood agreement, rdquo but in fact show errors of 10% or more between tests and simulations. Many papers with experimental results do not compare torque or force results or present error analysis. This is most unfortunate, as many authors deen to consider FEA results ldquodefinitiverdquo and use them as a basis for model comparisons. Saturation and iron losses appear to be the likely culprits. In a few papers, the reported analysis method takes full nonlinear magnetic effects into account. When magnetic saturation, eddy currents, hysteresis losses, and similar effects are modeled with care and in detail, differences between simulations and experiments typically are on the order of 5%. |
| Starting Page | 4027 |
| Ending Page | 4033 |
| File Size | 204342 |
| Page Count | 7 |
| File Format | |
| ISBN | 9781424416677 |
| ISSN | 02759306 |
| DOI | 10.1109/PESC.2008.4592584 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2008-06-15 |
| Publisher Place | Greece |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Computational modeling Torque Analytical models Magnetic hysteresis Integrated circuit modeling Saturation magnetization Force |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|