Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Yamilov, A. Sarma, R. Redding, B. Payne, B. Noh, H. Cao, H. |
| Copyright Year | 2013 |
| Description | Author affiliation: Yale Univ., New Haven, CT, USA (Sarma, R.; Redding, B.; Noh, H.; Cao, H.) || Missouri Univ. of Sci. & Technol., Rolla, MO, USA (Yamilov, A.; Payne, B.) |
| Abstract | Summary form only given. Diffusion is a statistical description of random walk of a classical particle, and the diffusion constant $D_{0}$ is the only parameter in the diffusion equation. For light as well as for other kinds of waves, this is an approximation, because the interference of partial waves is ignored [1]. Such interference is essential to Anderson localization. Proper account of the interference effects in random samples of finite size [2] and/or with absorption [3] results in spatial variation of the diffusion coefficient D(r) in the self consistent theory (SCT) of localization.To observe position-dependent diffusion, disordered waveguide structures were fabricated with the silicon on insulator wafer (see Fig. 1a). The patterns were written by electron beam lithography and etched in an inductive coupled reactive ion etcher. The waveguides contained 2D random arrays of air holes that scattered light, and the scattering length was varied by the hole size and filling fraction. The waveguide walls were made of photonic crystals that had complete bandgap in 2D, so that light could not escape laterally. However, light will leak out of the plane while being scattered by the air holes. This vertical leakage can be described by an effective absorption or dissipation. The relevant parameters are the diffusive absorption length ȟa0 and the transport mean free path . The localization length ȟ is determined by and the waveguide width W. Light from a CW laser source was injected into the waveguide from one end, and transported through the random medium. Spatial distribution of light intensity on the sample surface was imaged onto a camera by an objective lens. After entering the random medium, light is attenuated due to competing effects of backscattering and dissipation. I(y, z) was integrated along the transverse y-direction to determine the variation of intensity along the axial z-direction (parallel to the waveguide axis).Fig. lb shows the measured light intensity I(z) inside the ensembles of random waveguides of different width W (blue). The values of ξ and ξασ are obtained by fitting the most diffusive sample (W = 60 μm, longest ξ) with SCT (red dashed line) [2,3]. Using these values, SCT successfully predicts I(z) for all other samples. D(z) corresponding to red curves in Fig. lb are plotted in Fig. lc, showing a suppression of diffusion in the middle of the sample with increase ξασ/ξ (decrease of W) as predicted by SCT. |
| Sponsorship | Eur. Phys. Soc. |
| Starting Page | 1 |
| Ending Page | 1 |
| File Size | 397494 |
| Page Count | 1 |
| File Format | |
| e-ISBN | 9781479905942 |
| DOI | 10.1109/CLEOE-IQEC.2013.6801959 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2013-05-12 |
| Publisher Place | Germany |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Absorption Silicon-on-insulator Interference Waveguide lasers Educational institutions Approximation methods Equations |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|