Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Karuza, M. Biancofiore, C. Fonseca, P.Z.G. Galassi, M. Natali, R. Tombesi, P. Di Giuseppe, G. Vitali, D. |
| Copyright Year | 2013 |
| Description | Author affiliation: Phys. Div., Univ. of Camerino, Camerino, Italy (Karuza, M.; Biancofiore, C.; Fonseca, P.Z.G.; Galassi, M.; Natali, R.; Tombesi, P.; Di Giuseppe, G.; Vitali, D.) |
| Abstract | Summary form only given. In cavity optomechanics one can manipulate the dynamics of a nanomechanical resonator with light, and at the same time one can control light by tayloring its interaction with one (or more) mechanical resonances. A notable example of this kind of light beam control is provided by the optomechanical analogue of electromagnetically induced transparency (EIT), the so called optomechanically induced transparency (OMIT), which has been recently demonstrated [1-3]. In OMIT, the internal resonance of the medium is replaced by a dipole-like interaction of optical and mechanical degrees of freedom which occurs when the pump is tuned to the lower motional sideband of the cavity resonance. OMIT may offer various advantages with respect to standard atomic EIT: i) it does not rely on naturally occurring resonances and could therefore be applied to previously inaccessible wavelength regions; ii) a single optomechanical element can already achieve unity contrast, which in the atomic case is only possible within the setting of cavity quantum electrodynamics; iii) one can achieve significant optical delay times, since they are limited only by the mechanical resonance lifetime $1/γ_{m}.$ Previous OMIT demonstrations have been carried out in a cryogenic setup [1,2]; here we show OMIT in a room temperature optomechanical setup consisting of a thin semitransparent membrane within a high-finesse optical Fabry-Perot cavity [3]. Fig. 1 (left upper panel) shows the phase shift acquired by the probe beam during its transmission through the optomechanical cavity. The derivative of such a phase shift gives the group advance due to causality-preserving superluminal effects which a probe pulse spectrally contained within the transparency window would accumulate in its transmission through the cavity. From the fitting curve we infer a maximum signal time advance τT ≈ -108 ms, which is very close to the theoretical achievable maximum τTmax = -2C/[γm(1 +C)], which is -109 ms in our case where the optomechanical cooperativity is C = 160. The reflected field is instead delayed, and from the corresponding expression for the maximum time delay τRmax = 2/[γm(1 +C)], we can also infer a group delay of the reflected probe field τR ≈ 670 μs [3]. In the left lower panel the transparency frequency window in which the probe is completely reflected by the interference associated with the optomechanical interaction is evident. The width of the transparency window is related to the effective mechanical dampingγeffm ≈ γm(1 +C). Therefore both delay and width can be tuned by changing C which in our case is achieved by shifting the membrane along the cavity axis. This is illustrated in the right panel, where the modulus of the beat amplitude vs Δ is plotted for different positions shifts z0 of the membrane from a field node (see caption). |
| Sponsorship | Eur. Phys. Soc. |
| Starting Page | 1 |
| Ending Page | 1 |
| File Size | 102067 |
| Page Count | 1 |
| File Format | |
| e-ISBN | 9781479905942 |
| DOI | 10.1109/CLEOE-IQEC.2013.6801639 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2013-05-12 |
| Publisher Place | Germany |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Atom optics Optical resonators Educational institutions Cavity resonators Optical pumping Probes Physics |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|