Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Rahim, A. Bruns, J. Voigt, K. Petermann, K. Schwarz, S. Schaeffer, C.G. |
| Copyright Year | 2013 |
| Description | Author affiliation: Fachgebiet Hochfrequenztech., Tech. Univ. Berlin, Berlin, Germany (Rahim, A.; Bruns, J.; Voigt, K.; Petermann, K.) || Dept. of High-Freq. Eng. & Optoelectron., Helmut-Schmidt-Univ. Hamburg, Hamburg, Germany (Schwarz, S.; Schaeffer, C.G.) |
| Abstract | Summary form only given. The network traffic is estimated to be quadrupled by the year 2016 and will enter the “zettabyte” era. This ever increasing traffic demands more bandwidth and capacity in future from the long haul optical fiber transmission systems. The deployment of single carrier coherently detected 100 Gbps Polarization Multiplexed Quadrature Phase Shift Keying Wavelength Division Multiplexed (PM-QPSK WDM) systems is expected in the near future. Beyond that, the next generation 400 Gbps WDM systems are gaining lot of attention recently to sustain the traffic growth for the next years [1]. To make such systems spectrally efficient with low price per bit, multiple carrier Coherent Optical Orthogonal Frequency Division Multiplexing (CO-OFDM) is considered as one of the most attractive options. It allows the packing of multiple PM-QPSK carriers in a super-channel delivering high data rates. An all-optical implementation of the CO-OFDM receiver for systems operating at 400Gbps and beyond leads to an energy efficient solution and overcomes the speed limits of electronics.The demultiplexing of spectrally overlapping OFDM sub-carriers requires the Discrete Fourier Transformation (DFT) operation. A generalized schematic for a simple DFT filter for OFDM receiver is schematically shown in figure 1(a). This architecture allows the order R of the DFT filter to be increased by either increasing the order of the couplers or the number of stages N. In comparison to other integrated DFT approaches [2,3], this approach brings flexibility in filter scaling. Each stage of the filter is an MZI and performs the serial to parallel conversion and DFT operation. Various material platforms exist for the implementation of integrated optical circuits. One of them is Siliconon-Insulator (SOI) and is best known for its CMOS compatibility for mass production, energy efficiency, compact and high quality passive components. To emphasize the feasibility of our DFT filter architecture, we fabricated and characterized an 8 DFT filter in 4 μm SOI platform using a cascade of 2 and 4 port MZIs by employing 2 and 4 port Multimode Interference (MMI) couplers. The first stage of the fabricated filter has a 2port MZI with its outputs connected to the two 4-port MZIs in the second stage. The filter with 300 GHz Free Spectral Range (FSR) is designed to demultiplex 8 OFDM sub-carriers, that are QPSK modulated at 37.5 Gbaud resulting in an overall bit rate of 600 Gbps for each polarization. Figures 1(c) and 1(d) shows the filter transmission for TM and TE polarization. The performance of the filter is evaluated by using the measured filter response for an emulation performed in VPITransmissionMaker 8.7 for a 600 Gbps OFDM super-channel. All the channels have a Q value of more than 10 dB [4] to deliver a BER of 10-3. Figure 1(b) shows the constellation diagram obtained by demultiplexing one of the channels using the measurement result from the fabricated filter. |
| Sponsorship | Eur. Phys. Soc. |
| Starting Page | 1 |
| Ending Page | 1 |
| File Size | 156625 |
| Page Count | 1 |
| File Format | |
| e-ISBN | 9781479905942 |
| DOI | 10.1109/CLEOE-IQEC.2013.6801249 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2013-05-12 |
| Publisher Place | Germany |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Demultiplexing OFDM Discrete Fourier transforms Wavelength division multiplexing Optical fiber filters Next generation networking |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|