Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Kruger, Julia Ehrhardt, Jan Handels, Heinz |
| Copyright Year | 2015 |
| Abstract | Statistical shape and appearance models are often based on the accurate identification of one-to-one correspondences in a training data set. At the same time, the determination of these corresponding landmarks is the most challenging part of such methods. Hufnagel etal developed an alternative method using correspondence probabilities for a statistical shape model. We propose the use of probabilistic correspondences for statistical appearance models by incorporating appearance information into the framework. A point-based representation is employed representing the image by a set of vectors assembling position and appearances. Using probabilistic correspondences between these multi-dimensional feature vectors eliminates the need for extensive preprocessing to find corresponding landmarks and reduces the dependence of the generated model on the landmark positions. Then, a maximum a-posteriori approach is used to derive a single global optimization criterion with respect to model parameters and observation dependent parameters, that directly affects shape and appearance information of the considered structures. Model generation and fitting can be expressed by optimizing the same criterion. The developed framework describes the modeling process in a concise and flexible mathematical way and allows for additional constraints as topological regularity in the modeling process. Furthermore, it eliminates the demand for costly correspondence determination. We apply the model for segmentation and landmark identification in hand X-ray images, where segmentation information is modeled as further features in the vectorial image representation. The results demonstrate the feasibility of the model to reconstruct contours and landmarks for unseen test images. Furthermore, we apply the model for tissue classification, where a model is generated for healthy brain tissue using 2D MRI slices. Applying the model to images of stroke patients the probabilistic correspondences are used to classify between healthy and pathological structures. The results demonstrate the ability of the probabilistic model to recognize healthy and pathological tissue automatically. |
| Starting Page | 1698 |
| Ending Page | 1706 |
| File Size | 947574 |
| Page Count | 9 |
| File Format | |
| ISSN | 23807504 |
| e-ISBN | 9781467383912 |
| DOI | 10.1109/ICCV.2015.198 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2015-12-07 |
| Publisher Place | Chile |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Adaptation models Shape Probabilistic logic Brain models Computational modeling Data models |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|