Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Murdock, Calvin Torre, Fernando De la |
| Copyright Year | 2015 |
| Abstract | Unsupervised and weakly-supervised visual learning in large image collections are critical in order to avoid the time-consuming and error-prone process of manual labeling. Standard approaches rely on methods like multiple-instance learning or graphical models, which can be computationally intensive and sensitive to initialization. On the other hand, simpler component analysis or clustering methods usually cannot achieve meaningful invariances or semantic interpretability. To address the issues of previous work, we present a simple but effective method called Semantic Component Analysis (SCA), which provides a decomposition of images into semantic components. Unsupervised SCA decomposes additive image representations into spatially-meaningful visual components that naturally correspond to object categories. Using an overcomplete representation that allows for rich instance-level constraints and spatial priors, SCA gives improved results and more interpretable components in comparison to traditional matrix factorization techniques. If weakly-supervised information is available in the form of image-level tags, SCA factorizes a set of images into semantic groups of superpixels. We also provide qualitative connections to traditional methods for component analysis (e.g. Grassmann averages, PCA, and NMF). The effectiveness of our approach is validated through synthetic data and on the MSRC2 and Sift Flow datasets, demonstrating competitive results in unsupervised and weakly-supervised semantic segmentation. |
| Starting Page | 1484 |
| Ending Page | 1492 |
| File Size | 2267017 |
| Page Count | 9 |
| File Format | |
| ISSN | 23807504 |
| e-ISBN | 9781467383912 |
| DOI | 10.1109/ICCV.2015.174 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2015-12-07 |
| Publisher Place | Chile |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Semantics Image segmentation Matrix decomposition Histograms Visualization Principal component analysis Feature extraction |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|