Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Directory of Open Access Journals (DOAJ) |
|---|---|
| Author | Chin-Hsien Lin Fu-Cheng Wang Tien-Yun Kuo Po-Wei Huang Szu-Fu Chen Li-Chen Fu |
| Abstract | This paper develops neural network models that can recognize Parkinson’s disease (PD) at its early stage. PD is a common neurodegenerative disorder that presents with progressive slow movement, tremor, limb rigidity, and gait alterations, including stooped posture, shuffling steps, festination, freezing of gait, and falling. Early detection of PD enables timely initiation of therapeutic management that decreases morbidity. However, correct recognition of PD, especially in early-stage disease, is challenging because the aging population, which has a high PD prevalence, also commonly exhibits progressive gait slowness due to other disorders, such as joint osteoarthritis or sarcopenia. Therefore, developing a reliable and objective method is crucial for differentiating PD gait characteristics from those of the normal elderly. The aim of this study was to develop neural network models that could use the participants’ motion data during walking to identify PD. We recruited 32 drug-naïve PD patients with variable disease severity and 16 age/sex-matched healthy controls, and we measured their motions using inertial measurement unit (IMU) sensors. The IMU data were used to develop neural network models that could identify patients with advanced-stage PD with an average accuracy of 92.72% in validation processes. The models also differentiated patients with early-stage PD from normal elderly subjects with an accuracy of 99.67%. Another independent group of participants recruited to test the developed models confirmed the successful discrimination of PD-affected from healthy elderly, as well as patients at different severity stages. Our results provide support for early diagnosis and disease severity monitoring in patients with PD. |
| e-ISSN | 21693536 |
| DOI | 10.1109/ACCESS.2022.3150774 |
| Journal | IEEE Access |
| Volume Number | 10 |
| Language | English |
| Publisher | IEEE |
| Publisher Date | 2022-01-01 |
| Publisher Place | United States |
| Access Restriction | Open |
| Subject Keyword | Electrical Engineering. Electronics. Nuclear Engineering Parkinson's Disease Pd~stage Imu Neural Network Gait |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|