Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | Directory of Open Access Journals (DOAJ) |
---|---|
Author | Mwamba Kasongo Dahouda Inwhee Joe |
Abstract | Image processing is one of the most rapidly evolving technologies today, and it is an approach for applying operations on an image to improve it or extract relevant information from it. This is a critical research field in the engineering and computer sciences. However, analyzing a large number of variables demands a lot of memory and processing resources, which can cause a classification algorithm to overfit the training samples and underfit the test samples. As a result, various strategies, such as extraction, can be used to reduce the number of features in a dataset by producing new features from old ones. In this paper, we first propose a deep learning-based feature extraction approach with a modular neural network, where we employ a pre-trained neural architecture search net (NASNet) as a feature extractor on a custom dataset of raw copper and cobalt images. It allows the input image to be feed-forwarded while performing feature learning and feature map and then stops at a pooling layer before the fully connected (FC) layer in the NASNet to extract and save the outputs of that layer in dumped files. Second, the extracted features are used as training data to build a deep neural network and machine learning algorithms for the image classification of copper and cobalt raw minerals. The experimental results show that the NASNet extracts the features efficiently, and the proposed modular neural network performs well with the boosting-decision tree as a classifier, which gives higher accuracy of 91% than 90% of the deep neural network; moreover, the precision is 1 higher than 0.98 for the deep neural network. |
e-ISSN | 21693536 |
DOI | 10.1109/ACCESS.2022.3187420 |
Journal | IEEE Access |
Volume Number | 10 |
Language | English |
Publisher | IEEE |
Publisher Date | 2022-01-01 |
Publisher Place | United States |
Access Restriction | Open |
Subject Keyword | Electrical Engineering. Electronics. Nuclear Engineering Image Preprocessing Feature Extraction Deep Learning Machine Learning |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|