Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Directory of Open Access Journals (DOAJ) |
|---|---|
| Author | Denis Milosevic Marin Vodanovic Ivan Galic Marko Subasic |
| Abstract | Determining the demographic characteristics of a person post-mortem is a fundamental task for forensic experts, and the dental system is a crucial source of those information. Those characteristics, namely age and sex, can reliably be determined. The mandible and individual teeth survive even the harshest conditions, making them a prime target for forensic analysis. Current methods in forensic odontology rely on time-consuming manual measurements and reference tables, many of which rely on the correct determination of the tooth type. This study thoroughly explores the applicability of deep learning for sex assessment, age estimation, and tooth type determination from x-ray images of individual teeth. A series of models that use state-of-the-art feature extraction architectures and attention have been trained and evaluated. Their hyperparameters have been explored and optimized using a combination of grid and random search, totaling over a thousand experiments and 14076 hours of GPU compute time. Our dataset contains 86495 individual tooth x-ray image samples, with a subset of 7630 images having additional information about tooth alterations. The best-performing models are fine-tuned, the impact of tooth alterations is analyzed, and model performance is compared to current methods in forensic odontology literature. We achieve an accuracy of 76.41% for sex assessment, a median absolute error of 4.94 years for age estimation, and an accuracy of 87.24% to 99.15% for tooth type determination. The constructed models are fully automated and fast, their results are reproducible, and the performance is equal to or better than current state-of-the-art methods in forensic odontology. |
| e-ISSN | 21693536 |
| DOI | 10.1109/ACCESS.2022.3187959 |
| Journal | IEEE Access |
| Volume Number | 10 |
| Language | English |
| Publisher | IEEE |
| Publisher Date | 2022-01-01 |
| Publisher Place | United States |
| Access Restriction | Open |
| Subject Keyword | Electrical Engineering. Electronics. Nuclear Engineering Sex Assessment Tooth Type Determination Tooth Numbering Convolutional Neural Network Deep Learning Age Estimation |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|