Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Directory of Open Access Journals (DOAJ) |
|---|---|
| Author | Wentao Zhang Ting Zhang Guohua Cui Ying Pan |
| Abstract | With the development of automated and integrated large-scale industrial systems, accurate and effective fault diagnosis methods are required to ensure the security and reliability of running mechanical equipment. Due to the time consumption and poor generalization performance of conventional machine learning-based methods, deep learning (DL)-based methods have wider application prospects due to their end-to-end architectural properties. However, in the DL models, problems such as a large number of trainable parameters, complicated hyperparameter tuning, and initialization instability increase the difficulty of model training and limit higher performance. To address these disadvantages of the DL method, we proposed a novel DL framework by applying convolutional neural networks (CNNs) based on the optimization of transfer learning (TL). TL can help the model achieve higher precision with less computational cost by transferring low-level features and fine-tuning high-level layers. In addition, data processing was implemented using continuous wavelet transformation (CWT) to convert vibration signals into 2-D images, and support vector machines (SVM) were employed to replace the fully connected layers for better classification. As a result, the proposed method was superior to the classical deep architecture trained from scratch. The performance of the proposed method is analyzed by presenting testing reports, convergence curves, and confusion matrixes. Moreover, experiments comprised of cross-domain diagnosis, simulated composite fault detection, and performance comparison on seven mechanical datasets, including bearings, gearboxes, and rotors, are presented. Based on these results, it can be observed that our method achieved the highest accuracy under various conditions. |
| e-ISSN | 21693536 |
| DOI | 10.1109/ACCESS.2022.3173444 |
| Journal | IEEE Access |
| Volume Number | 10 |
| Language | English |
| Publisher | IEEE |
| Publisher Date | 2022-01-01 |
| Publisher Place | United States |
| Access Restriction | Open |
| Subject Keyword | Electrical Engineering. Electronics. Nuclear Engineering Convolutional Neural Network Fault Diagnosis Deep Learning Continuous Wavelet Transformation Transfer Learning Support Vector Machine |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|