Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | Directory of Open Access Journals (DOAJ) |
---|---|
Author | Pei-Ying Wang Chiao-Ting Chen Jain-Wun Su Ting-Yun Wang Szu-Hao Huang |
Abstract | House price prediction is a popular topic, and research teams are increasingly performing related studies by using deep learning or machine learning models. However, because some studies have not considered comprehensive information that affects house prices, prediction results are not always sufficiently precise. Therefore, we propose an end to end joint self-attention model for house prediction. In this model, we import data on public facilities such as parks, schools, and mass rapid transit stations to represent the availability of amenities, and we use satellite maps to analyze the environment surrounding houses. We adopt attention mechanisms, which are widely used in image, speech, and translation tasks, to identify crucial features that are considered by prospective house buyers. The model can automatically assign weights when given transaction data. Our proposed model differs from self-attention models because it considers the interaction between two different features to learn the complicated relationship between features in order to increase prediction precision. We conduct experiments to demonstrate the performance of the model. Experimental data include actual selling prices in real estate transaction data for the period from 2017 to 2018, public facility data acquired from the Taipei and New Taipei governments, and satellite maps crawled using the Google Maps application programming interface. We utilize these datasets to train our proposed and compare its performance with that of other machine learning-based models such as Extreme Gradient Boosting and Light Gradient Boosted Machine, deep learning, and several attention models. The experimental results indicate that the proposed model achieves a low prediction error and outperforms the other models. To the best of our knowledge, we are the first research to incorporate attention mechanism and STN network to conduct house price prediction. |
e-ISSN | 21693536 |
DOI | 10.1109/ACCESS.2021.3071306 |
Journal | IEEE Access |
Volume Number | 9 |
Language | English |
Publisher | IEEE |
Publisher Date | 2021-01-01 |
Publisher Place | United States |
Access Restriction | Open |
Subject Keyword | Electrical Engineering. Electronics. Nuclear Engineering House Price Prediction Heterogeneous Data Google Satellite Map Spatial Transformer Network Joint Self-attention Mechanism |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|