Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Directory of Open Access Journals (DOAJ) |
|---|---|
| Author | Li Qi Xiaoyun Yi Lina Yao Yixian Fang Yuwei Ren |
| Abstract | To date, quality-related multivariate statistical methods are extensively used in process monitoring and have achieved admirable effects. However, most of them contain recursive processes, which result in higher time complexity and are not suitable for increasingly complex industrial processes. Therefore, this paper embeds singular value decomposition (SVD) into the kernel principal component regression (KPCR) to accomplish Quality-related process monitoring with a lower computational cost. Specifically, the kernel technique is devoted to map the original input into the higher dimensional space to boost the nonlinear ability of the principal component regression (PCR), and then the KPCR is employed to capture the correlation between the input kernel matrix and the output matrix. At the same time, the kernelized input space is decomposed into two orthogonal quality-related and quality-unrelated spaces by SVD, and the statistics of the two spaces are calculated to detect the faults respectively. Compared with other multivariate statistical methods, it has the following advantages: 1) A quality-related kernel principal component analysis (QR-KPCR) algorithm is proposed. 2) Compared with partial least squares method, the recursive process is omitted and the training time is shortened. 3) The model is more concise and the fault detection process is faster. 4) By contrast with other multivariate statistical process monitoring, it has a higher fault detection rate. Experimental results on a widespread example and an industry benchmark verify the effectiveness and reliability of the proposed method. |
| e-ISSN | 21693536 |
| DOI | 10.1109/ACCESS.2021.3115351 |
| Journal | IEEE Access |
| Volume Number | 9 |
| Language | English |
| Publisher | IEEE |
| Publisher Date | 2021-01-01 |
| Publisher Place | United States |
| Access Restriction | Open |
| Subject Keyword | Electrical Engineering. Electronics. Nuclear Engineering Process Monitoring Fault Detection Kernel Principal Component Regression Multivariate Statistical Process Monitoring |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|