Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Directory of Open Access Journals (DOAJ) |
|---|---|
| Author | Abdollah Amirkhani Amir Khosravian Masoud Masih-Tehrani Hossein Kashiani |
| Abstract | Recent studies have recently exploited knowledge distillation (KD) technique to address time-consuming annotation task in semantic segmentation, through which one teacher trained on a single dataset could be leveraged for annotating unlabeled data. However, in this context, knowledge capacity is restricted, and knowledge variety is rare in different conditions, such as cross-model KD, in which the single teacher KD prohibits the student model from distilling information using cross-domain context. In this study, we aim to train a robust, lightweight student under the supervision of several expert teachers, which provide better instructive guidance compared to a single student-teacher learning framework. To be more specific, we first train five distinct convolutional neural networks (CNNs) as teachers for semantic segmentation on several datasets. To this end, several state-of-the-art augmentation transformations have also been utilized in training phase of our teachers. The impacts of such training scenarios are then assessed in terms of student robustness and accuracy. As the main contribution of this paper, our proposed multi-teacher KD paradigm endows the student with the ability to amalgamate and capture a variety of knowledge illustrations from different sources. Results demonstrated that our method outperforms the existing studies on both clean and corrupted data in the semantic segmentation task while benefiting from our proposed score weight system. Experiments validate that our multi-teacher framework results in an improvement of 9% up to 32.18% compared to the single-teacher paradigm. Moreover, it is demonstrated that our paradigm surpasses previous supervised real-time studies in the semantic segmentation challenge. |
| e-ISSN | 21693536 |
| DOI | 10.1109/ACCESS.2021.3107841 |
| Journal | IEEE Access |
| Volume Number | 9 |
| Language | English |
| Publisher | IEEE |
| Publisher Date | 2021-01-01 |
| Publisher Place | United States |
| Access Restriction | Open |
| Subject Keyword | Electrical Engineering. Electronics. Nuclear Engineering Autonomous Vehicles Convolutional Neural Networks Knowledge Distillation Semantic Segmentation Semi-supervised Learning Corruption Robustness |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|