Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Directory of Open Access Journals (DOAJ) |
|---|---|
| Author | Chentong Shao Xiong Hu Weidong Cao Shaoyang Men Gang Tang Jinman Lei |
| Abstract | In order to solve the problem of control performance degradation caused by time delay in wave compensation control system, predicting vessel heave motion can be the input vector of the control system to alleviate time delay problem. The vessel heave motion belongs to the problem of time series, this paper proposes an improved Long Short-Term Memory (LSTM) model with a random deactivation layer (dropout), which can deal with the time series problem very well. In order to obtain the vessel heave motion, this paper establishes a wave model suitable for marine operation, and solves the vessel heave motion through the mathematical model of vessel motion. Finally, the paper predicts the vessel heave motion in a short predicted time series. In the process of obtaining the prediction effect of vessel heave motion, the Back Propagation (BP) neural network and the standard LSTM neural network are used to compare with the improved LSTM neural network. While the predicted time series is 0.1 s at sea state 3, the mean absolute percentage (MAPE) errors of BP neural network in the prediction of vessel heave motion is $1.06×10^{-2}$%, the standard LSTM in the prediction of heave motion is $1.43×10^{-4}$%, the improved LSTM in the prediction of heave motion is $7.51×10^{-6}$%. The improved LSTM improves MAPE by $1.05×10^{-2}$% compared with the BP and $1.42×10^{-4}$% compared with the standard LSTM. The prediction results show that the improved LSTM has a strong prediction capability with not easily overfitted in vessel heave motion prediction. The results show that the improved LSTM provides a new idea for vessel motion prediction and solves the problem of time delay, which is useful for the study of stability in marine operations. |
| e-ISSN | 21693536 |
| DOI | 10.1109/ACCESS.2021.3072420 |
| Journal | IEEE Access |
| Volume Number | 9 |
| Language | English |
| Publisher | IEEE |
| Publisher Date | 2021-01-01 |
| Publisher Place | United States |
| Access Restriction | Open |
| Subject Keyword | Electrical Engineering. Electronics. Nuclear Engineering Short-term Prediction Improved Long Short-term Memory (lstm) Time Delay Vessel Heave Motion |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|