Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Directory of Open Access Journals (DOAJ) |
|---|---|
| Author | Chunmi Jeon Jaeun Choi |
| Abstract | With the widespread use of social networks, spam messages against them have become a major issue. Spam detection methods can be broadly divided into expert-based and machine learning-based detection methods. When experts participate in spam detection, the detection accuracy is fairly high. However, this method is highly time-consuming and expensive. Conversely, methods using machine learning have the advantage of automation, but their accuracy is relatively low. This paper proposes a spam-detection framework that combines and fully exploits the advantages of both methods. To reduce the workload of the experts, all messages are first analyzed via a primary machine learning filter, and those that are determined to be normal messages are allowed through, whereas suspicious messages are flagged. The flagged messages are subsequently analyzed by an expert to enhance the overall system accuracy. In the filtering process, cost-based machine learning is used to prevent the fatal error of misidentifying a spam message as a normal message. In addition, to obviate the continuously evolving spam trends, a module that periodically updates the expert-diagnosis results on the training dataset is incorporated into the framework. The results of experiments conducted, on an imbalanced dataset of spam tweets and normal tweets in a ratio similar to the actual situation in real life, indicate that the proposed framework has a spam-detection rate of almost 92.8%, which is higher than that of the conventional machine learning technique. Furthermore, the proposed framework delivered stable high performance even in an environment where social network messages changed continuously, unlike the conventional technique, which exhibited large performance deviations. |
| e-ISSN | 21693536 |
| DOI | 10.1109/ACCESS.2021.3098799 |
| Journal | IEEE Access |
| Volume Number | 9 |
| Language | English |
| Publisher | IEEE |
| Publisher Date | 2021-01-01 |
| Publisher Place | United States |
| Access Restriction | Open |
| Subject Keyword | Electrical Engineering. Electronics. Nuclear Engineering Expert Decision Making Machine Learning Real-time Spam Detection Social Network Twitter Spam |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|