Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Datta, Arindom Choi, Hongseok Li, Xiaochun |
| Copyright Year | 2005 |
| Abstract | Effective monitoring and diagnosis of manufacturing processes is of importance in reducing operation costs, improving product quality, and reducing process time. If conditions of manufacturing tools are continuously monitored, problems can be detected and solved during the processing cycle, resulting in less tool damage, higher productivity, and less energy consumption. In-situ monitoring of the basic operating conditions (e.g. temperature and strain) of certain mechanical tools and components can be accomplished by placing microsensors in some critical locations. Thin film microsensors (e.g. thermocouple, strain gauge) have drawn considerable attention recently due to their small size, fast response and lower cost [1]. Since most tools and components in manufacturing process are metallic, metal embedded thin film microsensors are very attractive. A new batch fabrication technique based on electroplating and wet chemical etching of silicon has been developed. Microsensors were directly fabricated on an etch stop layer grown on silicon wafer. A multilayer dielectric is deposited to insulate sensor areas followed by seed layer deposition, and electroplating a thicker metal layer. After silicon wafer is etched out, the microsensors are transferred from silicon to electroplated metal substrate directly. After plasma etching of the etch stop layer, these sensors can be further embedded into another electroplated metal layer from the top after insulation by dielectric multilayer. Metal embedded strain gauge array was fabricated successfully. Thin film Ni/Cr strain gauges were fabricated on LPCVD silicon nitride layer grown on a 3-inch silicon wafer. Each strain gauge unit was insulated by Al2O3/PECVD SixNy/Al2O3 multilayer before seed layer deposition and electroplating a thick nickel layer on whole wafer. Si wafer was then etched out in KOH solution to transfer all microsensors to electroplated nickel layer. LPCVD nitride layer covering the sensors was dry etched and same multilayer dielectric was selectively deposited over the sensors except pad areas. These microsensors were finally embedded into another electroplated nickel layer leaving the pads uncovered for external connection. This process offers a novel way to realize batch production of metal embedded microsensors for use in hostile manufacturing environment. |
| Sponsorship | Microelectromechanical Systems Division |
| Starting Page | 143 |
| Ending Page | 144 |
| Page Count | 2 |
| File Format | |
| ISBN | 079184224X |
| DOI | 10.1115/IMECE2005-81211 |
| e-ISBN | 0791837696 |
| Volume Number | Microelectromechanical Systems |
| Conference Proceedings | ASME 2005 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2005-11-05 |
| Publisher Place | Orlando, Florida, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Product quality Cycles Energy consumption Insulation Silicon nitride ceramics Temperature Metals Thermocouples Strain gages Semiconductor wafers Etching Electroplating Chemical etching Plasma-enhanced chemical vapor deposition Thin films Plasma etching Manufacturing tools Nickel Silicon Manufacturing Sensors Damage Microsensors |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|