Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | David, D. Gill Nathan, P. Siegel Robert, W. Bradshaw Clifford, K. Ho |
| Copyright Year | 2011 |
| Abstract | Thermal energy storage is one of the key differentiators between Concentrating Solar Power (CSP) and other renewable energy technologies. Molten salt is an effective and affordable method of storing thermal energy. Current salt storage systems charge at temperatures between 390°C and 585°C (oil filled parabolic trough systems to molten salt towers). It is highly desirable to increase the operating temperature of salt storage systems in order to increase the efficiency of the power cycle and to permit the use of alternative, high-temperature cycles. However, higher salt temperatures cause increased reactivity and thus increased corrosion rates in many materials. In order to utilize molten salt at higher temperature, it is necessary to test and understand these corrosion interactions at elevated temperature. A corrosion test system has been designed and built for evaluating molten salt/material interactions to 700°C. The primary components of this system are several salt containment vessels that are constructed of 6″ dia. × 24″ long stainless steel, aluminum diffusion treated pipes with flat plate welded to one end and a flanged lid on the other. The vessels are designed to operate with a charge of 10 kg of molten salt and accommodate a “sample tree” on which corrosion test coupons may be suspended. The salt vessels are heated and insulated on the bottom half, roughly to the salt fill level, and cooled on the top half to protect the flange gasket and feedthrough ports. The samples trees have a stainless plate that reduces radiative heat transfer from the molten salt to the lid. Finite element analysis was performed to determine the pipe length and heating and cooling requirements to maintain molten salt at 700°C while limiting the lid gasket to 300°C or less. The vessels are designed to have an oxygen atmosphere in the ullage region to mitigate nitrate decomposition. Oxygen systems for operation at 700°C require careful design including the sizing, routing, cleanliness, and material selection of components in order to reduce risk of fire. Additionally, the system is designed to run at 1–2 psig which requires specialized low pressure / high temperature components. In this paper we present the design of the molten salt corrosion test system including details related to the containment vessels, oxygen handling system, and control software along with a discussion of the safety considerations necessary for these high temperature, high oxygen partial pressure tests. |
| Sponsorship | Advanced Energy Systems Division and Solar Energy Division |
| Starting Page | 605 |
| Ending Page | 610 |
| Page Count | 6 |
| File Format | |
| ISBN | 9780791854686 |
| DOI | 10.1115/ES2011-54250 |
| Volume Number | ASME 2011 5th International Conference on Energy Sustainability, Parts A, B, and C |
| Conference Proceedings | ASME 2011 5th International Conference on Energy Sustainability |
| Language | English |
| Publisher Date | 2011-08-07 |
| Publisher Place | Washington, DC, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Cycles Temperature Containment vessels Flat plates Aluminum Computer software Thermal energy storage High temperature Design Manufacturing Safety Heating and cooling Radiative heat transfer Testing Oxygen Vessels Thermodynamic power cycles Flanges Parabolic troughs Pressure Diffusion (physics) Thermal energy Fire risk Storage Gates (closures) Corrosion Renewable energy Gaskets Concentrating solar power Stainless steel Finite element analysis Pipes Operating temperature |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|