Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Philip, D. Myers Bhardwaj, Abhinav Goswami, D. Yogi Stefanakos, Elias |
| Copyright Year | 2015 |
| Abstract | There is substantial potential to increase the operating temperatures of concentrating solar power (CSP) plants, thereby increasing the Carnot efficiency. Coupled with viable thermal energy storage (TES) strategies, this would bring us closer to achieving the goals of the U.S. Department of Energy Sunshot Initiative. Current TES media employ molten inorganic salts (namely, nitrate salts) for thermal storage, but they are limited in application to lower temperatures: generally, below 600°C. While sufficient for parabolic trough power plants, these materials are inadequate for use with the higher operating temperatures achievable in solar power tower-type CSP plants. For these higher temperatures, chloride salts are more ideal candidate storage media, either for sensible heat storage in the molten salt (e.g, a dual-tank storage arrangement) or for sensible and latent heat thermal energy storage (LHTES) as phase change materials (PCMs). Their melting points and those of their eutectic mixtures cover a broad range of potential operating temperatures, up to and including 800.7°C, the melting point of pure NaCl. This paper examines these salt systems and presents relevant properties and potential applications in high temperature (>400°C) utility scale solar thermal power generation. A preliminary screening of pure chloride salts based on available literature yields a list of promising candidate salts. Eutectic mixtures of these salts are also considered; the eutectic systems were modeled using the thermodynamic database software, FactSage. Thermophysical properties (melting point, latent heat) are summarized for each salt system. Radiative properties are also addressed, since at these temperatures, thermal radiation can become a significant mode of heat transfer. Candidate containment materials and strategies are discussed, along with the attendant potential for corrosion. Finally, cost data for these systems are presented, allowing for meaningful comparison among these systems and other materials in the context of utility scale thermal energy storage units. |
| Sponsorship | Advanced Energy Systems Division Solar Energy Division |
| File Format | |
| ISBN | 9780791856840 |
| DOI | 10.1115/ES2015-49460 |
| Volume Number | Volume 1: Advances in Solar Buildings and Conservation; Climate Control and the Environment; Alternate Fuels and Infrastructure; ARPA-E; Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power; Economic, Environmental, and Policy Aspects of Alternate Energy; Geothermal Energy, Harvesting, Ocean Energy and Other Emerging Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Micro and Nano Technology Applications and Materials |
| Conference Proceedings | ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum |
| Language | English |
| Publisher Date | 2015-06-28 |
| Publisher Place | San Diego, California, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Latent heat Temperature Computer software Solar power Thermal energy storage Parabolic troughs High temperature Phase change materials Storage Databases Thermal radiation Corrosion Concentrating solar power Heat storage Power stations Solar thermal power Eutectic alloys Melting point Heat transfer Operating temperature Containment |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|