Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Pellicone, Devin Ortega, Alfonso Valle, Marcelo Del Schon, Steven |
| Copyright Year | 2011 |
| Abstract | Advances in concentrating photovoltaics technology have generated a need for more effective thermal management techniques. Research in photovoltaics has shown that there is a more than 50% decrease in PV cell efficiency when operating temperatures approach 60°C. It is estimated that a waste heat load in excess of 500 W/cm2 will need to be dissipated at a solar concentration of 10,000 suns. Mini- and micro-scale heat exchangers provide the means for large heat transfer coefficients with single phase flow due to the inverse proportionality of Nusselt number with respect to the hydraulic diameter. For very high heat flux situations, single phase forced convection in micro-channels may not be sufficient and hence convective flow boiling in small scale heat exchangers has gained wider scrutiny due to the much higher achievable heat transfer coefficients due to latent heat of vaporization and convective boiling. The purpose of this investigation is to explore a practical and accurate modeling approach for simulating multiphase flow and heat transfer in mini- and micro-channel heat exchangers. The work is specifically aimed at providing a modeling tool to assist in the design of a mini/micro-scale stacked heat exchanger to operate in the boiling regime. The flow side energy and momentum equations have been implemented using a one-dimensional homogeneous approach, with local heat transfer coefficients and friction factors supplied by literature correlations. The channel flow solver has been implemented in MATLAB™ and embedded within the COMSOL™ FEM solver which is used to model the solid side conduction problem. The COMSOL environment allows for parameterization of design variables leading to a fully customizable model of a two-phase heat exchanger. |
| Sponsorship | Advanced Energy Systems Division and Solar Energy Division |
| Starting Page | 1957 |
| Ending Page | 1965 |
| Page Count | 9 |
| File Format | |
| ISBN | 9780791854686 |
| DOI | 10.1115/ES2011-54206 |
| Volume Number | ASME 2011 5th International Conference on Energy Sustainability, Parts A, B, and C |
| Conference Proceedings | ASME 2011 5th International Conference on Energy Sustainability |
| Language | English |
| Publisher Date | 2011-08-07 |
| Publisher Place | Washington, DC, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Microscale devices Finite element methods Modeling Heat flux Microchannels Design Heat conduction Finite element model Two-phase flow Photovoltaics Latent heat Forced convection Cooling Multiphase flow Momentum Heat exchangers Boiling Flow (dynamics) Stress Simulation Friction Solar energy Thermal management Channel flow Waste heat Heat transfer coefficients Heat transfer Operating temperature |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|