Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Roychoudhury, Abhik Chakraborty, Samarjit Ju, Lei Huynh, Bach Khoa |
| Abstract | Synchronous languages like Esterel have been widely adopted for designing reactive systems in safety-critical domains such as avionics. Specifications written in Esterel are based on the underlying "synchrony hypothesis", where the computation/communication associated with the processing of all events occurring within the same "clock tick" are assumed to happen instantaneously (or in zero time). In reality, Esterel specifications get compiled to implementations (such as C code) which do not satisfy the perfect synchrony assumption. Hence, platform-specific timing analysis of such implementations is an important research topic. Interest in this area has lately been renewed with the recent advances in Worst-case Execution Time (WCET)analysis techniques. In this paper we perform WCET analysis on sequential C code and exploit the structure of the code generated from Esterel specifications to obtain tight WCET estimates. Such estimates can validate Esterel-level assumptions on the instantaneous processing of signals or events that occur together. More importantly, they can be used to identify parts of the specification which might pose as timing/performance bottlenecks with respect to the underlying platform. This is done by exploiting traceability links between Esterel specifications and the generated C code, which map the time-critical computations at the C-level back to the Esterel-level. This not only allows a designer to optimize or simplify Esterel specifications, but also choose/configure suitable implementation platforms. We show the results of our WCET analysis on a set of standard Esterel benchmarks and illustrate the utility of our model-code traceability technique using an Esterel specification of a reflex game application. |
| Starting Page | 173 |
| Ending Page | 178 |
| Page Count | 6 |
| File Format | |
| ISBN | 9781605584706 |
| DOI | 10.1145/1450135.1450175 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2008-10-19 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Synchronous programming Esterel Wcet analysis |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|