Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Costantini, Simone Falivene, Anna Chiappini, Mattia Malerba, Giorgia Dei, Carla Bellazzecca, Silvia Storm, Fabio A. Andreoni, Giuseppe Ambrosini, Emilia Biffi, Emilia |
| Abstract | Background Robot-Assisted Gait Rehabilitation (RAGR) is an established clinical practice to encourage neuroplasticity in patients with neuromotor disorders. Nevertheless, tasks repetition imposed by robots may induce boredom, affecting clinical outcomes. Thus, quantitative assessment of engagement towards rehabilitation using physiological data and subjective evaluations is increasingly becoming vital. This study aimed at methodologically exploring the performance of artificial intelligence (AI) algorithms applied to structured datasets made of heart rate variability (HRV) and electrodermal activity (EDA) features to predict the level of patient engagement during RAGR. Methods The study recruited 46 subjects (38 underage, 10.3 ± 4.0 years old; 8 adults, 43.0 ± 19.0 years old) with neuromotor impairments, who underwent 15 to 20 RAGR sessions with Lokomat. During 2 or 3 of these sessions, ad hoc questionnaires were administered to both patients and therapists to investigate their perception of a patient’s engagement state. Their outcomes were used to build two engagement classification targets: self-perceived and therapist-perceived, both composed of three levels: “Underchallenged”, “Minimally Challenged”, and “Challenged”. Patient’s HRV and EDA physiological signals were processed from raw data collected with the Empatica E4 wristband, and 33 features were extracted from the conditioned signals. Performance outcomes of five different AI classifiers were compared for both classification targets. Nested k-fold cross-validation was used to deal with model selection and optimization. Finally, the effects on classifiers performance of three dataset preparation techniques, such as unimodal or bimodal approach, feature reduction, and data augmentation, were also tested. Results The study found that combining HRV and EDA features into a comprehensive dataset improved the synergistic representation of engagement compared to unimodal datasets. Additionally, feature reduction did not yield any advantages, while data augmentation consistently enhanced classifiers performance. Support Vector Machine and Extreme Gradient Boosting models were found to be the most effective architectures for predicting self-perceived engagement and therapist-perceived engagement, with a macro-averaged F1 score of 95.6% and 95.4%, respectively. Conclusion The study displayed the effectiveness of psychophysiology-based AI models in predicting rehabilitation engagement, thus promoting their practical application for personalized care and improved clinical health outcomes. |
| Related Links | https://jneuroengrehab.biomedcentral.com/counter/pdf/10.1186/s12984-024-01519-2.pdf |
| Ending Page | 21 |
| Page Count | 21 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 17430003 |
| DOI | 10.1186/s12984-024-01519-2 |
| Journal | Journal of NeuroEngineering and Rehabilitation |
| Issue Number | 1 |
| Volume Number | 21 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2024-12-19 |
| Access Restriction | Open |
| Subject Keyword | Neurosciences Neurology Rehabilitation Medicine Biomedical Engineering and Bioengineering Robot-Assisted Gait Rehabilitation Engagement Psychophysiological signals Classification K-Nearest Neighbors Random forest Extreme Gradient Boosting Support Vector Machine Neural Network |
| Content Type | Text |
| Resource Type | Article |
| Subject | Health Informatics Rehabilitation |
| Journal Impact Factor | 5.2/2023 |
| 5-Year Journal Impact Factor | 5.6/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|