Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Ahmed, Kirstin Taheri, Shayan Weygers, Ive Ortiz-Catalan, Max |
| Abstract | Background Systems that capture motion under laboratory conditions limit validity in real-world environments. Mobile motion capture solutions such as Inertial Measurement Units (IMUs) can progress our understanding of \"real\" human movement. IMU data must be validated in each application to interpret with clinical applicability; this is particularly true for diverse populations. Our IMU analysis method builds on the OpenSim IMU Inverse Kinematics toolkit integrating the Versatile Quaternion-based Filter and incorporates realistic constraints to the underlying biomechanical model. We validate our processing method against the reference standard optical motion capture in a case report with participants with transfemoral amputation fitted with a Percutaneous Osseointegrated Implant (POI) and without amputation walking over level ground. We hypothesis that by using this novel pipeline, we can validate IMU motion capture data, to a clinically acceptable degree. Results Average RMSE (across all joints) between the two systems from the participant with a unilateral transfemoral amputation (TFA) on the amputated and the intact sides were 2.35° (IQR = 1.45°) and 3.59° (IQR = 2.00°) respectively. Equivalent results in the non-amputated participant were 2.26° (IQR = 1.08°). Joint level average RMSE between the two systems from the TFA ranged from 1.66° to 3.82° and from 1.21° to 5.46° in the non-amputated participant. In plane average RMSE between the two systems from the TFA ranged from 2.17° (coronal) to 3.91° (sagittal) and from 1.96° (transverse) to 2.32° (sagittal) in the non-amputated participant. Coefficients of Multiple Correlation (CMC) results between the two systems in the TFA ranged from 0.74 to > 0.99 and from 0.72 to > 0.99 in the non-amputated participant and resulted in ‘excellent’ similarity in each data set average, in every plane and at all joint levels. Normalized RMSE between the two systems from the TFA ranged from 3.40% (knee level) to 54.54% (pelvis level) and from 2.18% to 36.01% in the non-amputated participant. Conclusions We offer a modular processing pipeline that enables the addition of extra layers, facilitates changes to the underlying biomechanical model, and can accept raw IMU data from any vendor. We successfully validate the pipeline using data, for the first time, from a TFA participant using a POI and have proved our hypothesis. |
| Related Links | https://jneuroengrehab.biomedcentral.com/counter/pdf/10.1186/s12984-024-01426-6.pdf |
| Ending Page | 13 |
| Page Count | 13 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 17430003 |
| DOI | 10.1186/s12984-024-01426-6 |
| Journal | Journal of NeuroEngineering and Rehabilitation |
| Issue Number | 1 |
| Volume Number | 21 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2024-07-31 |
| Access Restriction | Open |
| Subject Keyword | Neurosciences Neurology Rehabilitation Medicine Biomedical Engineering and Bioengineering Gait analysis Motion analysis Prosthetic gait Osseointegration Transfemoral amputation gait IMU motion capture Inertial measurement unit Joint kinematics Motion capture validation Orientation estimation algorithm |
| Content Type | Text |
| Resource Type | Article |
| Subject | Health Informatics Rehabilitation |
| Journal Impact Factor | 5.2/2023 |
| 5-Year Journal Impact Factor | 5.6/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|