Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | PubMed Central |
|---|---|
| Author | Zeng, Ping Zhao, Yang Zhang, Liwei Huang, Shuiping Chen, Feng |
| Editor | Chen, Lin |
| Copyright Year | 2014 |
| Abstract | This paper mainly utilizes likelihood-based tests to detect rare variants associated with a continuous phenotype under the framework of kernel machine learning. Both the likelihood ratio test (LRT) and the restricted likelihood ratio test (ReLRT) are investigated. The relationship between the kernel machine learning and the mixed effects model is discussed. By using the eigenvalue representation of LRT and ReLRT, their exact finite sample distributions are obtained in a simulation manner. Numerical studies are performed to evaluate the performance of the proposed approaches under the contexts of standard mixed effects model and kernel machine learning. The results have shown that the LRT and ReLRT can control the type I error correctly at the given α level. The LRT and ReLRT consistently outperform the SKAT, regardless of the sample size and the proportion of the negative causal rare variants, and suffer from fewer power reductions compared to the SKAT when both positive and negative effects of rare variants are present. The LRT and ReLRT performed under the context of kernel machine learning have slightly higher powers than those performed under the context of standard mixed effects model. We use the Genetic Analysis Workshop 17 exome sequencing SNP data as an illustrative example. Some interesting results are observed from the analysis. Finally, we give the discussion. |
| Related Links | http://dx.doi.org/10.1371/journal.pone.0093355 |
| Starting Page | 93355 |
| File Format | |
| ISSN | 19326203 |
| e-ISSN | 19326203 |
| Journal | PLoS ONE |
| Issue Number | 3 |
| Volume Number | 9 |
| Language | English |
| Publisher | Public Library of Science |
| Publisher Date | 2014-03-01 |
| Access Restriction | Open |
| Rights Holder | Public Library of Science |
| Subject Keyword | Biochemistry, Genetics and Molecular Biology(all) Agricultural and Biological Sciences(all) Medicine(all) Research in Higher Education |
| Content Type | Text |
| Resource Type | Article |
| Subject | Multidisciplinary |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|