Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Binkley, D.M. |
| Copyright Year | 2007 |
| Description | Author affiliation: Univ. of North Carolina at Charlotte, Charlotte (Binkley, D.M.) |
| Abstract | The selection of drain current, inversion coefficient, and channel length for each MOS device in an analog circuit results in significant tradeoffs in performance. The selection of inversion coefficient, which is a numerical measure of MOS inversion, enables design freely in weak, moderate, and strong inversion and facilitates optimum design. Here, channel width required for layout is easily found and implicitly considered in performance expressions. This paper gives hand expressions motivated by the EKV MOS model and measured data for MOS device performance, inclusive of velocity saturation and other small-geometry effects. A simple spreadsheet tool is then used to predict MOS device performance and map this into complete circuit performance. Tradeoffs and optimization of performance are illustrated by the design of three, 0.18-mum CMOS operational transconductance amplifiers optimized for DC, balanced, and AC performance. Measured performance shows significant tradeoffs in voltage gain, output resistance, transconductance bandwidth, input-referred flicker noise and offset voltage, and layout area. |
| Starting Page | 47 |
| Ending Page | 60 |
| File Size | 945017 |
| Page Count | 14 |
| File Format | |
| ISBN | 8392263243 |
| DOI | 10.1109/MIXDES.2007.4286119 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2007-06-21 |
| Publisher Place | Poland |
| Access Restriction | Subscribed |
| Rights Holder | Tech Univ of Lodz Dept of Microelectronics & Computer Science |
| Subject Keyword | Circuit optimization Area measurement Distortion Optimization Design optimization Semiconductor device modeling Transconductance efficiency Voltage Bandwidth Analog CMOS Velocity measurement Flicker noise Transconductance moderate strong inversion Operational amplifiers Early voltage Analog circuits MOS design Inversion coefficient EKV MOS model MOS devices Weak Tradeoffs Operational transconductance amplifier Thermal noise Sizing Mismatch Channel length Gain |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|