Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Bhate, D. Subbarayan, G. Nguyen, L. Zhao, J. |
| Copyright Year | 2008 |
| Description | Author affiliation: Purdue Univ., West Lafayette, IN (Bhate, D.; Subbarayan, G.) |
| Abstract | The problem of solder joint fatigue is essentially one of fatigue crack growth. However, little work has been done that enables fatigue life predictions by means of tracking the crack front and its growth. Most popular fatigue life models are empirical and therefore, limited in their applicability and in the insight they provide. Analytical fracture mechanics approaches such as the Paris Law and the J-integral are of questionable validity due to the fact that several assumptions made in these approaches are not appropriate in the context of solder joint fatigue. Failure in solder joints involves large plastic deformation in a viscoplastic material along with crack growth which is not self-similar and is significantly large relative to the size of the joint. Accurate descriptions of crack growth in solder joints can thus be obtained only by means of an approach that includes (a) the complete constitutive behavior of solder and (b) a non-empirical failure model that does not make the limiting assumptions of small cracks or self-similar crack growth. One such promising approach is the hybrid damage modeling approach, which is inspired by cohesive zone modeling and Weibull functions. In this study, we focus on investigating the nature of the stress and strain behavior in solder joints and its effect on the hybrid model. We review well understood principles in elastic-plastic fracture mechanics and more recent work in cohesive zone modeling, that address the nature of the singular solutions at the crack tip and provide insight when dealing with the more complex problem of solder joint fracture. Using three dimensional finite element analysis of a chip scale package (CSP), we systematically examined the stress-strain behavior at the edge of the solder joint along the interface. The singular nature of the behavior manifests itself as mesh dependence of the predicted crack front shape and the cycles to failure. We discuss the conditions under which the predicted crack growth rate is of reasonable accuracy, by incorporation of a characteristic length measure. We validate predictions made by the hybrid damage modeling approach against a companion experimental study in which crack growth was tracked in packages subjected to accelerated thermal cycling. In the first part, presented here, we study the effects of choice of constitutive model (elasticity, deformation and incremental plasticity and creep) and finite deformation on the nature of the singularity at the crack tip and the resulting mesh sensitivity. We use a conventional crack-in-plate analysis to first study the effects and then investigate similar effects in the more complex problem of a solder joint. In the second part, a characteristic length is introduced in an attempt to mitigate the mesh dependence, and shown to improve results for the predictions of crack growth in both, the crack-in-plate and the solder joint models. |
| Starting Page | 738 |
| Ending Page | 745 |
| File Size | 746111 |
| Page Count | 8 |
| File Format | |
| ISBN | 9781424417001 |
| ISSN | 10879870 |
| DOI | 10.1109/ITHERM.2008.4544341 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2008-05-28 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Soldering Fatigue Chip scale packaging Predictive models Plastics Joining materials Stress Capacitive sensors Finite element methods Shape mesh sensitivity solder joint failure fracture singularity |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|