Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Jaeseon Lee Mudawar, I. |
| Copyright Year | 2008 |
| Description | Author affiliation: Boiling & Two-Phase Flow Lab. (BTPFL), Purdue Univ. Int. Electron. Cooling Alliance (PUIECA), West Lafayette, IN (Jaeseon Lee; Mudawar, I.) |
| Abstract | For a given heat sink thermal resistance and ambient temperature, the temperature of an electronic device rises fairly linearly with increasing device heat flux. This relationship is especially problematic for defense electronics, where heat dissipation is projected to exceed 1000 $W/cm^{2}$ in the near future. Direct and indirect low temperature refrigeration cooling facilitate appreciable reduction in the temperature of both coolant and device. This study explores the benefits of cooling the device using direct and indirect refrigeration cooling systems. In the direct cooling system, a micro-channel heat sink serves as an evaporator in a conventional vapor compression cycle using R134a as working fluid. In the indirect cooling system, HFE 7100 is used to cool the heat sink in a primary pumped liquid loop that rejects heat to a secondary refrigeration loop. Two drastically different flow behaviors are observed in these systems. Because of compressor performance constraints, mostly high void fraction two-phase patterns are encountered in the R134a system, dominated by saturated boiling. On the other hand, the indirect refrigeration cooling system facilitates highly subcooled boiling inside the heat sink. Both systems are shown to provide important cooling benefits, but the indirect cooling system is far more effective at dissipating high heat fluxes. Tests with this system yielded cooling heat fluxes as high as 840 $W/cm^{2}$ without incurring critical heat flux (CHF). Results from both systems are combined to construct an overall map of performance trends relative to mass velocity, subcooling, pressure, and surface tension. Extreme conditions of near-saturated flow, low mass velocity, and low pressure produce 'micro' behavior, where macro-channel flow pattern maps simply fail to apply, instabilities are prominent, and CHF is quite low. One the other hand, systems with high mass velocity, high subcooling, and high pressure are far more stable and yield very high CHF values; two-phase flow in these systems follows the fluid flow and heat transfer behavior as well as the flow pattern maps of macro-channels. |
| Starting Page | 132 |
| Ending Page | 144 |
| File Size | 2147457 |
| Page Count | 13 |
| File Format | |
| ISBN | 9781424417001 |
| ISSN | 10879870 |
| DOI | 10.1109/ITHERM.2008.4544263 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2008-05-28 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Thermal management of electronics Electronics cooling Thermal management Heat sinks Temperature Refrigeration Resistance heating Thermal resistance Heat pumps Coolants refrigeration micro-channel high flux |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|