Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Chowdhury, Piyas Sikka, Kamal Silva, Anuja De Seshadri, Indira |
| Copyright Year | 2018 |
| Abstract | Thermal interface materials (TIMs), which transmit heat from semiconductor chips, are indispensable in today’s microelectronic devices. Designing superior TIMs for increasingly demanding integration requirements, especially for server-level hardware with high power density chips, remains a particularly coveted yet challenging objective. This is because achieving desired degrees of thermal-mechanical attributes (e.g. high thermal conductivity, low elastic modulus, low viscosity) poses contradictory challenges. For instance, embedding thermally conductive fillers (e.g. metallic particles) into a compliant yet considerably less conductive matrix (e.g. polymer) enhances heat transmission, however at the expense of overall compliance. This leads to extensive trial-and-error based empirical approaches for optimal material design. Specifically, high volume fraction filler loading, role of filler size distribution, mixing of various filler types are some outstanding issues that need further clarification. To that end, we first forward a generic packing algorithm with ability to simulate a variety of filler types and distributions. Secondly, by modeling the physics of heat/force flux, we predict effective thermal conductivity, elastic modulus and viscosity for various packing cases. |
| Sponsorship | Electronic and Photonic Packaging Division |
| File Format | |
| ISBN | 9780791851920 |
| DOI | 10.1115/IPACK2018-8337 |
| Conference Proceedings | ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems |
| Language | English |
| Publisher Date | 2018-08-27 |
| Publisher Place | San Francisco, California, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Viscosity Power density Semiconductors (materials) Elastic moduli Packing (shipments) Packings (cushioning) Fillers (materials) Microelectronic devices Modeling Physics Design Errors Heat Algorithms Particulate matter Thermal conductivity Hardware Polymers Heat transfer |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|