Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Xie, Weidong Ahmad, Mudasir |
| Copyright Year | 2012 |
| Abstract | Solder joint reliability of Pb-free ball grid array (BGA) components, one of the most commonly used microelectronic devices, is one of the major concerns in product development and qualification. Accelerated Thermal Cycling (ATC) testing, though very time consuming and costly, remains the most prevalent means to evaluate solder joint reliability under certain end-use conditions. Wherever the test results are not readily available, a fine-tuned and well-benchmarked modeling methodology is of significance in producing quick-turn judgments and risk assessments to expedite product development. The two most critical elements in simulating solder joint reliability are 1) the solder constitutive equations, which describe the solder creep behavior under different working conditions, and 2) the fatigue model which ties the damage index from finite element modeling together with the experimental results. In this study, a novel approach has been explored in which the constants of the constitutive equation and fatigue model for Sn-based Pb-free solder joints were derived inversely based on ATC results of a ceramic BGA test vehicle. In order to cover the typical end-use conditions of the targeted products, the test vehicle was assembled onto PCBs with two different thicknesses and then thermal cycled under three different temperature profiles. The basic idea was that all of the constants, both for the constitutive equation and the fatigue life prediction model, were initially given as a range. Then by utilizing modeFrontier®, a multi-objective optimization software, the finite-element model was coupled with the virtual optimization algorithm to derive simultaneously all the constants that yielded the best fatigue life predictions compared to the test results. To simplify the problem without compromising the generality, a hyperbolic sine creep constitutive equation and Coffin-Manson fatigue model were selected in the analysis. There were a total of 6 constants to be determined; the initial ranges of the constants were defined by fitting the creep experimental data for a variety of Sn-based solder materials. Available in other publications, the selected solder materials cover a wide range of both Ag and Cu content which therefore represent the typical behavior of the most commonly adopted solder materials by the industry. To reduce the computational cost and enable fast convergence of multiple-generation iterations required by the multiple objective optimization algorithms, a very-well benchmarked submodel has been employed. Furthermore, by utilizing ANSYS® high performance computing (HPC) capability and cloud computing, the computational time was reduced significantly. An overall good correlation was achieved between the fatigue life prediction using the constants derived by this approach and the test characteristic life. |
| Starting Page | 1011 |
| Ending Page | 1021 |
| Page Count | 11 |
| File Format | |
| ISBN | 9780791845257 |
| DOI | 10.1115/IMECE2012-87734 |
| Volume Number | Volume 9: Micro- and Nano-Systems Engineering and Packaging, Parts A and B |
| Conference Proceedings | ASME 2012 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2012-11-09 |
| Publisher Place | Houston, Texas, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Cloud computing Solders Creep Computer software Optimization algorithms Pareto optimization Microelectronic devices Temperature profiles Modeling Optimization Vehicles Finite element model Risk assessment Damage Testing Fatigue life Solder joints Fatigue Ceramics Lead-free solders Fittings Simulation Ball-grid-array packaging Tin Product development Finite element analysis Reliability Constitutive equations |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|