Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Byun, Sang Hyun Cho, Sung Kwon |
| Copyright Year | 2011 |
| Abstract | Recently, EWOD (Electrowetting on dielectric) has attracted a great deal of interest with applications of digital lab-on-a-chip in which microfluids are manipulated in a discrete form of droplets using electrical inputs. In most EWOD applications, the commonly used powering method is wired transmission, which may not be suitable for implantable lab-on-a-chip applications. In this paper, we will investigate wireless power transmission for EWOD utilizing the inductive coupling. Unlike the conventional inductive coupling, wireless EWOD requires a high voltage (> 50 V) at the receiver side which is connected to the EWOD chip since EWOD naturally operates under high input voltages. To satisfy this condition, the resonant inductive coupling method at a high resonant frequency is introduced and investigated. To optimize the transmission efficiency, we study the effects of many parameters such as the frequency, the inductance and the capacitance at the transmitter as well as receiver, the gap between the transmitter coil and receiver coil, and so on, by measuring the voltage at the receiver and the contact angle of droplets placed on wirelessly operated EWOD chip. In addition, by introducing amplitude modulation (AM) to the resonant inductive coupling, wireless AC electrowetting which generates droplet oscillations and is one of the commonly used operational modes is also achieved. |
| Sponsorship | Heat Transfer Division |
| Starting Page | 639 |
| Ending Page | 646 |
| Page Count | 8 |
| File Format | |
| ISBN | 9780791844632 |
| DOI | 10.1115/ICNMM2011-58178 |
| Volume Number | ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, Volume 1 |
| Conference Proceedings | ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels |
| Language | English |
| Publisher Date | 2011-06-19 |
| Publisher Place | Edmonton, Alberta, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Oscillations Capacitance Resonance Drops |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|