Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Ganapathy, Harish Al-Hajri, Ebrahim Michael, M. Ohadi |
| Copyright Year | 2011 |
| Abstract | The aim of this work is to investigate numerically the mass transfer characteristics in a Taylor flow microchannel reactor. Previous attempts to model gas-liquid mass transfer in microchannels have mainly been done by the unit cell based models. Limitations of this approach are its incapability to account for the mass transfer in the inlet mixing region and the dependence on empirical data to define the unit cell geometry. The present work attempts to overcome both these shortcomings by adopting a purely numerical approach to model the mass transfer in a Taylor flow microreactor. A finite-element implementation of the phase field method was used to predict the hydrodynamics of the two-phase flow The flow pattern obtained was used to define the computational domain to model the mass transfer. The reaction system of CO2 absorption into aqueous NaOH solution was considered for gas superficial velocities ranging from 0.09 to 0.25 m/s with the liquid phase superficial velocities ranging from 0.02 to 0.21 m/s. Channels with hydraulic diameters ranging from 100 μm to 500 μm were considered with flow focusing and cross flow types of inlet configuration. The effect of channel length was also studied by varying the residence time in the transient simulation. Results suggest that the conventional unit cell based approaches which do not model the inlet mixing region could over predict the mass transfer by up to 16%. Smaller diameter channels were found to have improved mass transfer characteristics. This was found to be further enhanced by higher concentration levels of the liquid reactant and higher temperatures. The channel wall wettability was found to negligibly affect the mass transfer characteristics. The predictions from the present model were compared with experimental data as well as with predictions of the unit cell based model and a good agreement was obtained with both models. |
| Sponsorship | Heat Transfer Division |
| Starting Page | 685 |
| Ending Page | 695 |
| Page Count | 11 |
| File Format | |
| ISBN | 9780791844632 |
| DOI | 10.1115/ICNMM2011-58155 |
| Volume Number | ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, Volume 1 |
| Conference Proceedings | ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels |
| Language | English |
| Publisher Date | 2011-06-19 |
| Publisher Place | Edmonton, Alberta, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Inlet mixing Microreactor Unit cell Microchannel Mass transfer Taylor flow Computer simulation Flow (dynamics) Microchannels |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|