Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Christopher, M. Collier Born, Brandon Jonathan, F. Holzman |
| Copyright Year | 2011 |
| Abstract | Digital microfluidic architectures have been a source of great enthusiasm for on-chip fluid applications requiring precise control and reconfigurability. Droplet-based systems operating with exceedingly small volumes (pL) can make use of digital microfluidic control systems to direct fluid motion using voltages on cascaded electrode structures. The voltage on these electrodes can be adapted via software, thus the generalized templates offered by digital microfluidic systems can be tailored for numerous end-user applications. The work presented here addresses the two major challenges for implementing these digital microfluidics systems for end-user applications: parallel addressability and reduced input voltages. The challenges are overcome through dual-phase AC voltage routing in a 16×16 digital microfluidic multiplexer using low (10 Vrms) input voltages. The first challenge, related to parallel addressability, comes about because of the generalized template for digital microfluidics, with underlying square-grid electrodes forming a two-dimensional, M×N, plane. Such a structure cannot be readily scaled up for use in single-layered highly-parallel architectures as external address lines cannot be effectively contacted to internal square electrodes lying within a 2-dimensional. With this in mind, the work here introduces multiplexing with a cross-referenced architecture having only M+N input lines. Microdroplets lie between orthogonal overlying row electrodes and underlying column electrodes, and nonlinear threshold-voltage localization is used to initiate motion of the desired microdroplet in the two-dimensional plane. Microdroplet interference (motion of undesired microdroplets) along the activated row and column is avoided, as the applied voltage initiates motion only at the overlapped electrode region (where the voltage is doubled and above-threshold). A dual-phase AC voltage control system is used to address the above bi-layered cross-referenced electrode structure and simultaneously provides a natural solution to the second, reduced voltage, challenge of practical digital microfluidic architectures. Reduced input voltages can be achieved in the digital microfluidic system through an integrated centre-tap AC transformer (a dielectric layer in the digital microfluidic multiplexer limits the current and power consumption, allowing for step-up voltage transformation). The dual-phase outputs from this voltage transformer are 180° out-of-phase, and the AC signals from these outputs are routed to the appropriate row and column electrodes to bring about above-threshold motion. Controlled switching is demonstrated in this work for input voltages below 10 Vrms. Structural and electrical design issues for this dual-phase AC digital microfluidic integrated chip are addressed in this work, and results are presented for an integrated digital microfluidic multiplexer prototype. |
| Sponsorship | Heat Transfer Division |
| Starting Page | 127 |
| Ending Page | 134 |
| Page Count | 8 |
| File Format | |
| ISBN | 9780791844632 |
| DOI | 10.1115/ICNMM2011-58055 |
| Volume Number | ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, Volume 1 |
| Conference Proceedings | ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels |
| Language | English |
| Publisher Date | 2011-06-19 |
| Publisher Place | Edmonton, Alberta, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Electrodes Design Energy consumption Fluids Architecture Computer software Drops Photoluminescence Control systems Signals Engineering prototypes Microfluidics |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|