Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Charles, J. Rymal Sourabh, V. Apte Narayanan, Vinod Drost, Kevin |
| Copyright Year | 2014 |
| Abstract | This paper discuses the design of several micro-channel solar receiver devices. Due to enhanced heat transfer in micro-channels, these devices can achieve a higher surface efficiency than current receiver technology, leading to an increase in overall plant efficiency. The goal is to design an efficient solar receiver based on use of super-critical carbon-dioxide and molten salt as heat-transfer fluids. The super-critical Brayton cycle has shown potential for a higher efficiency than current power cycles used in CSP. Molten salt has been used in CSP applications in the past. The required inlet and outlet temperatures of the fluid are 773.15 K and 923.15 K for carbon-dioxide and 573.15 K and 873.15 K for molten salt. These temperature values are determined by the power cycles the devices are designed to operate in. The required maximum pressure drop is 0.35 bar for carbon-dioxide and 1 bar for molten salt. These pressure values are intended to be a practical goal for maximum pressure drop. The super-critical carbon-dioxide power cycle requires an operating pressure of is 120 bar. Finally, each device must withstand any mechanical and thermal stresses that may exist. Devices presented range in size from 1 cm2 to 4 cm2 and in heat transfer rates from 200 W to 400 W. The size of the device is based on the output capacity of the solar simulator which will be used for testing. For carbon-dioxide, three designs were developed with varying manufacturability. The low risk design features machined and welded parts and straight parallel channels. The medium risk design features machined and diffusion bonded parts and straight parallel channels. The high risk design features a circular micro-pin-fin array created using EDM and is constructed using diffusion bonding. The absence of high operating pressure for molten salt made structural design much easier than for carbon-dioxide. Conjugate heat-transfer simulations of each design were used to evaluate pressure drop, receiver efficiency, and flow distribution. Two and three dimensional structural analyses were used to ensure that the devices would withstand the mechanical and thermal stresses. Based on the numerical analyses, a receiver efficiency of 89.7% with a pressure drop of 0.2 bar were achieved for carbon-dioxide. The design was found to have a structural safety factor of 1.3 based maximum mechanical stress occurring in the headers. For molten salt, an efficiency of 92.1% was achieved with a pressure drop of 0.5 bar. |
| Sponsorship | Advanced Energy Systems Division |
| File Format | |
| ISBN | 9780791845868 |
| DOI | 10.1115/ES2014-6637 |
| Volume Number | Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies |
| Conference Proceedings | ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology |
| Language | English |
| Publisher Date | 2014-06-30 |
| Publisher Place | Boston, Massachusetts, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Structural design Temperature Carbon dioxide Risk Microchannels Design Fluids Engineering simulation Safety Thermal stresses Testing Thermodynamic power cycles Brayton cycle Diffusion bonding (metals) Pressure Diffusion (physics) Flow (dynamics) Electrical discharge machining Stress Numerical analysis Simulation Pressure drop Solar energy Heat transfer Structural analysis |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|