Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Shakeri, Mostafa Soltanzadeh, Maryam Berson, R. Eric Sharp, M. Keith |
| Copyright Year | 2014 |
| Abstract | Energy storage is key to expanding the capacity factor for electric power from solar energy. To accommodate variable weather patterns and electric demand, storage may be needed not just for diurnal cycles, but for variations as long as seasonal. Five solar electric systems with energy storage were simulated and compared, including an ammonia thermochemical energy storage cycle, compressed air energy storage (CAES), pumped hydroelectric energy storage (PHES), vanadium flow battery, and thermal energy storage (TES). To isolate the influence of the storage system, all systems used the same parabolic concentrator and Stirling engine. For CAES, PHES and battery, the engine directly produced electricity, which was then converted and stored. For TES, heat transfer fluid was heated by the dish and stored, and later used to drive the engine to produce electricity. For ammonia, the dish heated an ammonia dissociation reactor to produce nitrogen and hydrogen, which was stored. Heat was recovered to drive the engine by reforming ammonia from the stored gases. Each system was simulated in TRNSYS with weather data for Louisville, KY and Phoenix, AZ with subsystem efficiencies and storage losses estimated from previous experimental results. All systems including the ammonia cycle involved time dependent storage losses. Losses from the receiver included convection and emitted radiation, both of which depend on receiver temperature. Overall (solar-storage-electric) efficiency of the ammonia cycle depended strongly on synthesis reactor temperature, ranging from less than 1% to ∼18% for both Louisville, KY and Phoenix, AZ, at 500 K to 800 K, respectively. In contrast, the effect of dissociation reactor temperature was less. Overall (solar-electric-storage-electric) efficiencies of the CAES, systems in the limit of zero storage time ranged from ∼10% to ∼18% for solar receiver temperature of 500 K to 800 K. The vanadium flow battery and PHES efficiencies ranged from ∼9% to ∼17% for the same conditions. TES initially provided 12 to 23% efficiency over the same range of temperature. When time-dependent storage losses were included, however, efficiencies for all systems declined rapidly except the ammonia cycle in both locations and PHES in Louisville. The ammonia system had the highest efficiency after one month of storage, an advantage that increased with time of storage. The simulations showed that TES was most efficient for diurnal-scale storage and the ammonia cycle for longer storage. Full capacity factor for solar electric production may be most efficiently accomplished with a combination of direct solar-electric production and systems with both diurnal and long-term storage, the proportions of which depending on weather conditions and electric demand profiles. |
| Sponsorship | Advanced Energy Systems Division |
| File Format | |
| ISBN | 9780791845868 |
| DOI | 10.1115/ES2014-6347 |
| Volume Number | Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies |
| Conference Proceedings | ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology |
| Language | English |
| Publisher Date | 2014-06-30 |
| Publisher Place | Boston, Massachusetts, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Cycles Temperature Hydrogen Thermal energy storage Batteries Nitrogen Flow (dynamics) Engines Convection Electricity (physics) Gases Hydropower Fluids Heat Storage Electronic systems Compressed air Radiation (physics) Simulation Solar energy Engineering simulation Stirling engines Heat transfer Energy storage |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|