Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Knott, R. C. Sadowski, D. L. Jeter, S. M. Abdel-Khalik, S. I. Al-Ansary, H. A. El-Leathy, Abdelrahman |
| Copyright Year | 2014 |
| Abstract | This research is a part of the DOE-funded SunShot project on “High Temperature Falling Particle Receiver.” Storing thermal energy using solid particulates is a way to mitigate the time of day dependency of concentrated solar power. Small particles may be stored easily, and can be used as a heat transfer medium to transfer heat to the power cycle working fluid through a heat exchanger. This study examines the physical characteristics of solid particulates of different materials kept inside large storage containers. Particle behavior at the expected high temperatures of the concentrated solar power cycle combined with the elevated pressure experienced within the storage container must be evaluated to assess the impact on their physical properties and ensure that the particles would not sinter thereby impacting flow through the system components particularly the receiver and heat exchanger. Sintering is a process of fusing two or more particles together to form a larger agglomerate. In the proposed concentrated solar power tower design, particles will experience temperatures from 600°C to 1000°C. The increase in temperature changes the physical characteristics of the particle, along with any impurities that could form particle to particle bonds. In addition, the hydrostatic pressure exerted on particles stored inside a storage unit increases the probability of sintering. Thus, it is important to examine the characteristics of particles under elevated temperatures and pressures. The experimental procedure involves heating particulates of a known mass and size distribution to temperatures between 600°C and 1000°C inside a crucible. As the temperature is held constant, the particulate sample is pressed upon by a piston pushing into the crucible with a known constant pressure. This process is repeated for different temperatures and pressures for varying lengths of time. The resulting particulates are cooled, and their size distribution is measured to determine the extent of sintering, if any, during the experiment. The particulates tested include various types of sand, along with alumina particles. The data from this experiment will allow designers of storage bins for the solid particulates to determine when significant sintering is expected to occur. |
| Sponsorship | Advanced Energy Systems Division |
| File Format | |
| ISBN | 9780791845868 |
| DOI | 10.1115/ES2014-6588 |
| Volume Number | Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies |
| Conference Proceedings | ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology |
| Language | English |
| Publisher Date | 2014-06-30 |
| Publisher Place | Boston, Massachusetts, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Cycles Temperature Sinter (metallurgy) Thermodynamic power cycles Containers Probability Thermal energy storage Heat exchangers High temperature Pressure Flow (dynamics) Thermal energy Design Pistons Sands Fluids Heat Storage Concentrating solar power Heating Particulate matter Sintering Hydrostatic pressure Heat transfer |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|