Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Yang, Yijun Oztekin, Alparslan Neti, Sudhakar Mohapatra, Satish |
| Copyright Year | 2011 |
| Abstract | Heat transfer and flow dynamics of nanofluids are investigated in developing laminar pipe flows. Characterization of nanofluids is examined by measuring resultant effective particle size, thermal conductivity and viscosity for various values of particle concentrations and temperatures. Nanofluids considered in this study are diamond-graphene (ND-50) nanoparticle in silicone oil (Syltherm 800), and Al2O3 nanoparticles in DI water with and without dispersers/stabilizers. The particle size of various nanofluids is determined quantitatively from measurements using Dynamic Light Scattering device (DLS) and also determined qualitatively from SEM images. Thermal conductivity measurements are conducted by using nano-flash LFA447 device for particle volume fractions ranging from 0.8% to 5.1%. Measured values of thermal conductivity of all fluids at low concentrations agree well with the results predicted by Maxwell model. Viscosity measurements are conducted using parallel plate geometry Rheometrics viscometer at different concentration and temperature as a function of shear rate. At low shear rates the fluid behaves as a Newtonian fluid while it becomes a shear thinning fluid at higher particle concentration of the same nanofluid. There is a significant increase in the viscosity at even low concentrations. Viscosity of nanofluids is also a strong function of temperature at all values of concentration considered in this study. The significant increase in viscosity may diminish nanofluids’ application as an advanced heat transfer fluid. The effects of nanofluid on the drag reduction and heat transfer enhancement are determined and compared with the pressure drop and heat transfer coefficient measurements with the base fluids at the same flow conditions. Our experimental measurements indicate that the pumping power to flow nanofluids is nearly the same as the pumping power required to flow the same amount of base fluid although the viscosity of nanofluids are significantly higher. Convective heat transfer enhancement with the nanofluids is limited to 5% or slightly higher as has also been reported by other workers. Hence addition of nanoparticles into heat transfer fluids could have the potential for heat transfer enhancement in pipe flow without paying the penalty of increasing pumping power. |
| Sponsorship | Heat Transfer Division |
| File Format | |
| ISBN | 9780791838921 |
| DOI | 10.1115/AJTEC2011-44448 |
| e-ISBN | 9780791838945 |
| Conference Proceedings | ASME/JSME 2011 8th Thermal Engineering Joint Conference |
| Language | English |
| Publisher Date | 2011-03-13 |
| Publisher Place | Honolulu, Hawaii, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Characterization Convective heat transfer Synthesis Friction Nanofluid Convection Nanofluids |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|