Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Jung, Seunghwan Banerjee, Debjyoti |
| Copyright Year | 2011 |
| Abstract | In this study we present a simple analytical model for estimating the specific heat capacity of nanofluids containing tube shaped and disc shaped nanoparticles dispersed in a solvent. The model includes the effect of an ordered liquid layer formed at the solid-liquid interface between a tube or disc shaped nanoparticle and the liquid phase. The size and thermo-physical properties of the ordered liquid layer are calculated based on the results of molecular dynamic (MD) simulation. The model is applied to nanofluid dispersed carbon nanotube (CNT) nanoparticles with tube shape in a liquid phase of alkaline metal carbonate salt eutectic mixture (Li2CO3:K2CO3 in 62:38 molar ratio). In addition, the specific heat of nanofluid with graphite nanoparticles with disc shape is calculated using the simple analytical model. The alkaline salt mixture as well as the corresponding nanofluid has potential applications as thermal energy storage (TES) material for solar thermal energy conversion. Hence, the specific heat is an important thermo-physical property for determining the thermal efficiency of the solar thermal energy system. To identify the effect of particle size and mass concentration, the specific heat capacity is plotted as a function of particle size and mass concentration. The experimental data is used to validate the simple analytical model for the effect of particle shape on the specific heat. The results show that the specific heat of nanofluid increases with the mass concentration of nanoparticles. Furthermore, nanoparticles with diameters less than 6 nm can cause anomalous enhancement in the specific heat of nanofluid. The results also show that tube shaped nanoparticles are more effective in enhancing the specific heat capacity of nanofluids than disc shaped nanoparticles due to the higher specific surface area of tube shaped nanoparticles compared to disc shaped nanoparticles of similar mass. |
| Sponsorship | Heat Transfer Division |
| File Format | |
| ISBN | 9780791838921 |
| DOI | 10.1115/AJTEC2011-44372 |
| e-ISBN | 9780791838945 |
| Conference Proceedings | ASME/JSME 2011 8th Thermal Engineering Joint Conference |
| Language | English |
| Publisher Date | 2011-03-13 |
| Publisher Place | Honolulu, Hawaii, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Particle size Metals Nanofluids Carbon nanotubes Molecular dynamics Thermal energy storage Nanoparticles Specific heat Simulation Particulate matter Graphite Disks Solar thermal power Shapes Thermal efficiency |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|