Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Nakahara, Masaya Murakami, Koichi Hashimoto, Jun Ishihara, Atsushi |
| Copyright Year | 2011 |
| Abstract | This study is performed to investigate directly the local flame properties of turbulent propagating flames at the same weak turbulence condition (u′/SL0 = 1.4), in order to clarify basically the influence of the addition of hydrogen to methane or propane mixtures on its local burning velocity. The mixtures having nearly the same laminar burning velocity with different rates of addition of hydrogen δH are prepared. A two-dimensional sequential laser tomography technique is used to obtain the relationship between the flame shape and the flame displacement. The local flame displacement velocity SF is quantitatively obtained as the key parameters of the turbulent combustion. Additionally, the Markstein number Ma was obtained from outwardly propagating spherical laminar flames, in order to examine the effects of positive stretch and curvature on burning velocity. It was found that the trends of the mean values of measured SF with respect to δH, the total equivalence ratio Φ and fuel types corresponded well its turbulent burning velocity. The trend of the obtained Ma could explain the local burning velocity of turbulent flames only qualitatively. Based on the Ma, the local burning velocity at the part of turbulent flames with positive stretch and curvature, SLt, is estimated quantitatively. As a result, a quantitative relationship between the estimated SLt and the SF at positive stretch and curvature of turbulent flames could be observed for mixtures with increasing the Lewis number. |
| Sponsorship | Heat Transfer Division |
| File Format | |
| ISBN | 9780791838921 |
| DOI | 10.1115/AJTEC2011-44039 |
| e-ISBN | 9780791838945 |
| Conference Proceedings | ASME/JSME 2011 8th Thermal Engineering Joint Conference |
| Language | English |
| Publisher Date | 2011-03-13 |
| Publisher Place | Honolulu, Hawaii, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Markstein number Turbulent propagating flame Hydrogen added hydrocarbon Local burning velocity Lewis number Combustion Flames Turbulence Hydrogen |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|