Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Soyata, Tolga Guo, Xiaochen Ipek, Engin |
| Abstract | As CMOS scales beyond the 45nm technology node, leakage concerns are starting to limit microprocessor performance growth. To keep dynamic power constant across process generations, traditional MOSFET scaling theory prescribes reducing supply and threshold voltages in proportion to device dimensions, a practice that induces an exponential increase in subthreshold leakage. As a result, leakage power has become comparable to dynamic power in current-generation processes, and will soon exceed it in magnitude if voltages are scaled down any further. Beyond this inflection point, multicore processors will not be able to afford keeping more than a small fraction of all cores active at any given moment. Multicore scaling will soon hit a power wall. This paper presents resistive computation, a new technique that aims at avoiding the power wall by migrating most of the functionality of a modern microprocessor from CMOS to spin-torque transfer magnetoresistive RAM (STT-MRAM)---a CMOS-compatible, leakage-resistant, non-volatile resistive memory technology. By implementing much of the on-chip storage and combinational logic using leakage-resistant, scalable RAM blocks and lookup tables, and by carefully re-architecting the pipeline, an STT-MRAM based implementation of an eight-core Sun Niagara-like CMT processor reduces chip-wide power dissipation by 1.7× and leakage power by 2.1× at the 32nm technology node, while maintaining 93% of the system throughput of a CMOS-based design. |
| Starting Page | 371 |
| Ending Page | 382 |
| Page Count | 12 |
| File Format | |
| ISBN | 9781450300537 |
| DOI | 10.1145/1815961.1816012 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2010-06-19 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Stt-mram Power-efficiency |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|