Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Gaillardon, Pierre-Emmanuel Tang, Xifan Giacomin, Edouard De Micheli, Giovanni |
| Abstract | Resistive Random Access Memory(RRAM) technology opens the opportunity for granting both high-performance and low-power features to routing multiplexers. In this paper, we study the physical design considerations related to RRAM-based routing multiplexers and particularly the integration of 4T(ransistor)1R(RAM) programming structures within their routing tree. We first analyze the limitations in the physical design of a naive one-level 4T1R-based multiplexer, such as co-integration of low-voltage nominal power supply and high voltage programming supply, as well as the use of long metal wires across different isolating wells. To address the limitations, we improve the one-level 4T1R-based multiplexer by re-arranging the nominal and programming voltage domains, and also study the optimal location of RRAMs in terms of performance. The improved design can effectively reduce the length of long metal wires by 50%. Electrical simulations show that using a 7nm FinFET transistor technology, the improved 4T1R-based multiplexers improve delay by 69% as compared to the basic design. At nominal working voltage, considering an input size ranging from 2 to 32, the improved 4T1R-based multiplexers outperform the best CMOS multiplexers in area by 1.4x, delay by 2x and power by 2x respectively. The improved 4T1R-based multiplexers operating at near-Vt regime can improve Power-Delay Product by up to 5.8x when compare to the best CMOS multiplexers working at nominal voltage. |
| Starting Page | 47 |
| Ending Page | 54 |
| Page Count | 8 |
| File Format | |
| ISBN | 9781450346962 |
| DOI | 10.1145/3036669.3036675 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2017-03-19 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Multiplexer Resitive memory Physical design |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|