Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Standaert, François-Xavier Del Pozo, Santos Merino Kamel, Dina Moradi, Amir |
| Abstract | Static power consumption is an increasingly important concern when designing circuits in deep submicron technologies. Besides its impact for low-power implementations, recent research has investigated whether it could lead to exploitable side-channel leakages. Both simulated analyses and measurements from FPGA devices have confirmed that such a static signal can indeed lead to successful key recoveries. In this respect, the main remaining question is whether it can become the target of choice for actual adversaries, especially since it has smaller amplitude than its dynamic counterpart. In this paper, we answer this question based on actual measurements taken from an AES S-box prototype chip implemented in a 65-nanometer CMOS technology. For this purpose, we first provide a fair comparison of the static and dynamic leakages in a univariate setting, based on worst-case information theoretic analysis. This comparison confirms that the static signal is significantly less informative than the dynamic one. Next, we extend our evaluations to a multivariate setting. In this case, we observe that simple averaging strategies can be used to reduce the noise in static leakage traces. As a result, we mainly conclude that (a) if the target chip is working at maximum clock frequency (which prevents the previously mentioned averaging), the static leakage signal remains substantially smaller than the dynamic one, so has limited impact, and (b) if the adversary can reduce the clock frequency, the noise of the static leakage traces can be reduced arbitrarily. Whether the static signal leads to more informative leakages than the dynamic one then depends on the quality of the measurements (as the former one has very small amplitude). But it anyway raises a warning flag for the implementation of algorithmic countermeasures such as masking, that require high noise levels. |
| Starting Page | 145 |
| Ending Page | 150 |
| Page Count | 6 |
| File Format | |
| ISBN | 9783981537048 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2015-03-09 |
| Publisher Place | San Jose |
| Access Restriction | Subscribed |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|