Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | ACM Digital Library |
---|---|
Author | Warren, David Chen, Jianfu |
Abstract | We study hierarchical classification of products in electronic commerce, classifying a text description of a product into one of the leaf classes of a tree-structure taxonomy. In particular, we investigate two essential problems, performance evaluation and learning, in a synergistic way. Unless we know what is the appropriate performance evaluation metric for a task, we are not going to learn a classifier of maximum utility for the task. Given the characteristics of the task of hierarchical product classification, we shed insight into how and why common evaluation metrics such as error rate can be misleading, which is applicable for treating other real world applications. The analysis leads to a new performance evaluation metric that tailors this task to reflect a vendor's business goal of maximizing revenue. The proposed metric has an intuitive meaning as the average revenue loss, which depends on both the value of individual products and the hierarchical distance between the true class and the predicted class. Correspondingly, our learning algorithm uses multi-class SVM with margin re-scaling to optimize the proposed metric, instead of error rate or other common metrics. Margin re-scaling is sensitive to the scaling of loss functions. We propose a loss normalization approach to appropriately calibrating the scaling of loss functions, which is applicable to general classification and structured prediction tasks whenever using structured SVM with margin re-scaling. Experiments on a large dataset show that our approach outperforms standard multi-class SVM in terms of the proposed metric, effectively reducing the average revenue loss. |
Starting Page | 1351 |
Ending Page | 1360 |
Page Count | 10 |
File Format | |
ISBN | 9781450322638 |
DOI | 10.1145/2505515.2505582 |
Language | English |
Publisher | Association for Computing Machinery (ACM) |
Publisher Date | 2013-10-27 |
Publisher Place | New York |
Access Restriction | Subscribed |
Subject Keyword | Cost-sensitive learning Revenue loss Hierarchical classification Taxonomy Document classification Margin re-scaling Product classification Unspsc Svm Loss normalization |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|