Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Guo, Ting Zhu, Xingquan |
| Abstract | Graph classification concerns the learning of discriminative models, from structured training data, to classify previously unseen graph samples into specific categories, where the main challenge is to explore structural information in the training data to build classifiers. One of the most common graph classification approaches is to use sub-graph features to convert graphs into instance-feature representations, so generic learning algorithms can be applied to derive learning models. Finding good sub-graph features is regarded as an important task for this type of learning approaches, despite that there is no comprehensive understanding on (1) how effective sub-graph features can be used for graph classification? (2) how many sub-graph features are sufficient for good classification results? (3) does the length of the sub-graph features play major roles for classification? and (4) whether some random sub-graphs can be used for graph representation and classification? Motivated by the above concerns, we carry out empirical studies on four real-world graph classification tasks, by using three types of sub-graph features, including frequent sub-graphs, frequent sub-graph selected by using information gain, and random sub-graphs, and by using two types of learning algorithms including Support Vector Machines and Nearest Neighbour. Our experiments show that (1) the discriminative power of sub-graphs varies by their sizes; (2) random sub-graphs have a reasonably good performance; (3) number of sub-graphs is important to ensure good performance; and (4) increasing number of sub-graphs reduces the difference between classifiers built from different sub-graphs. Our studies provide a practical guidance for designing effective sub-graph based graph classification methods. |
| Starting Page | 817 |
| Ending Page | 822 |
| Page Count | 6 |
| File Format | |
| ISBN | 9781450322638 |
| DOI | 10.1145/2505515.2505614 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2013-10-27 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Sub-graph Random feature Graph classification |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|