Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Gibson, Matthew L. Hinman, Nancy W. |
| Copyright Year | 2013 |
| Abstract | Studies of hot springs have focused mainly on the properties of fluids and solids. Fewer studies focus on the relationship between the hot springs and groundwater/surface-water environments. The differences in temperature and dissolved solids between hot-spring water and typical surface water and groundwater allow interactions to be traced. Electromagnetic terrain (EMT) conductivity is a nonintrusive technique capable of mapping mixing zones between distinct subsurface waters. These interactions include zones of groundwater/surface-water exchange and groundwater mixing. Herein, hydrogeological techniques are compared with EMT conductivity to trace hot-spring discharge interactions with shallow groundwater and surface water. Potentiometric-surface and water-quality data determined the hydrogeochemistry of two thermally influenced areas in Yellowstone National Park, Wyoming (USA). Data from the sites revealed EMT conductivity contrasts that reflected the infiltration of conductive hot-spring discharge to local groundwater systems. The anomalies reflect higher temperatures and conductivity for Na$^{+}$–Cl$^{−}$-rich hydrothermal fluids compared to the receiving groundwater. EMT conductivity results suggested hot springs are fed by conduits largely isolated from shallow groundwater; mixing of waters occurs after hot-spring discharge infiltrates groundwater from the surface and, generally, not by leakage in the subsurface. A model was proposed to explain the growth of sinter mounds.Les études sur les sources chaudes ont porté principalement sur les propriétés des fluides et de l’encaissant. Il y a moins d’études ciblant la relation entre les sources chaudes et les eaux souterraines et superficielles environnantes. Les différences de températures et des matières dissoutes entre d’une part l’eau de la source chaude et d’autre part les eaux de surface et souterraines types permettent d’esquisser leurs interactions. La conductivité électromagnétique de terrain (EMT) est une technique non intrusive se prêtant à la cartographie des zones de mélange entre des eaux de subsurface distinctes. Ces interactions intègrent des zones d’échange eau de surface/eau souterraine et de mélange d’eaux souterraines. A cet égard, les techniques hydrogéologiques sont comparées à la conductivité EMT pour tracer les interactions de l’émergence de la source chaude avec l’eau souterraine superficielle et l’eau de surface. Les données potentiométriques de surface et de qualité de l’eau ont caractérisé l’hydrogéochimie de deux zones influencées par les eaux thermales du Parc National de Yellowstone, Wyoming (USA). Les données provenant des sites ont révélé des contrastes de conductivité EMT qui traduisent l’infiltration de l’émission conductrice de la source chaude dans les systèmes d’eau souterraine locaux. Les anomalies reflètent pour les fluides hydrothermaux, riches en Na$^{+}$–Cl$^{−}$ des températures et une conductivité plus élevées comparativement à l’eau souterraine réceptrice. Les résultats de conductivité EMT suggèrent que les sources chaudes sont alimentées par des conduits largement isolés de l’eau souterraine superficielle; le mélange des eaux se produit quand l’émergence de la source chaude infiltre l’eau souterraine depuis la surface et généralement pas par fuite d’eau chaude au droit de la subsurface. Un modèle est proposé pour expliquer l’édification des amas concrétionnés.Los estudios de manantiales de aguas termales se han enfocado principalmente en las propiedades de los fluidos y los sólidos. Unos pocos estudios enfocan la relación entre los manantiales termales y los ambientes de agua superficial y agua subterránea. Las diferencias de temperatura y sólidos disueltos entre el agua de manantiales termales y el agua superficial y el agua subterránea típica permiten trazar las interacciones. La conductividad electromagnética del terreno (EMT) es una técnica no intrusiva capaz de mapear zonas de mezclas entre distintas aguas subsuperficiales. Estas interacciones incluyen zonas de intercambio de agua subterránea y agua superficial y mezcla de agua subterránea. Aquí, se comparan las técnicas hidrogeológicas con la conductividad EMT para trazar las interacciones de descarga de manantiales termales con el agua subterránea somera y con el agua superficial. Los datos de la superficie potenciométrica y de la calidad del agua determinaron la hidrogeoquímica de dos áreas termalmente influenciadas en el Yellowstone National Park, Wyoming (EEUU). Los datos de los sitios revelaron que contrastan las conductividades EMT con las que reflejaron la infiltración de la descarga del manantial termal conductivo al sistema de agua subterránea local. Las anomalías reflejan mejor temperaturas altas y la conductividad para flujos hidrotermales ricos en Na$^{+}$–Cl$^{—}$comparados al agua subterránea receptora. Los resultados de la conductividad EMT sugirieron que los manantiales termales están alimentados por conductos en gran parte aislados de agua subterránea somera: la mezcla de agua ocurre después que la descarga del manantial termal infiltra al agua subterránea desde la superficie y generalmente no por filtración en la subsuperficie. Se propone un modelo para explicar el crecimiento de montículos de sinterización.Os estudos de fontes termais têm-se centrado principalmente nas propriedades dos líquidos e dos sólidos. São escassos os estudos que se concentram na relação entre as nascentes termais e os ambientes de águas subterrâneas/superficiais. As diferenças de temperatura e de sólidos dissolvidos entre as águas das nascentes termais e as águas superficiais e subterrâneas típicas permitem a identificação de interações. A condutividade eletromagnética do terreno (EMT) é uma técnica não intrusiva capaz de mapear zonas de mistura entre diferentes águas subsuperficiais. Essas interações incluem zonas de trocas de águas superficiais-águas subterrâneas e mistura de águas subterrâneas. Aqui, as técnicas hidrogeológicas são comparadas com a condutividade EMT para delimitar as interações da descarga da água termal com a água subterrânea subsuperficial e a água superficial. Os dados da superfície potenciométrica e da qualidade da água determinam a hidrogeoquímica de duas áreas termicamente influenciadas no Parque Nacional de Yellowstone, Wyoming (EUA). Os dados desses locais revelaram contrastes de condutividade EMT que refletiam a infiltração de descargas de água termal condutiva para os sistemas de água subterrânea local. As anomalias refletem as temperaturas e as condutividades mais elevadas dos fluidos hidrotermais ricos em Na$^{+}$–Cl$^{−}$ em comparação com as águas subterrâneas recetoras. Os resultados da condutividade EMT sugeriram que as nascentes termais são alimentadas por condutas em grande parte isoladas das águas subterrâneas subsuperficiais; a mistura de águas ocorre depois da descarga das nascentes termais se infiltrar na água subterrânea a partir da superfície e, geralmente, não por transferência em meio subsuperficial. Foi proposto um modelo para explicar o crescimento das acumulações de sedimento calcário (sinter). |
| Starting Page | 919 |
| Ending Page | 933 |
| Page Count | 15 |
| File Format | |
| ISSN | 14312174 |
| Journal | Hydrogeology Journal |
| Volume Number | 21 |
| Issue Number | 4 |
| e-ISSN | 14350157 |
| Language | Portuguese |
| Publisher | Springer-Verlag |
| Publisher Date | 2013-03-23 |
| Publisher Institution | International Association of Hydrogeologists |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Hot springs Electromagnetic terrain conductivity Groundwater/surface-water relations Hydrochemistry USA Hydrogeology Hydrology/Water Resources Geology Waste Water Technology Water Pollution Control Water Management Aquatic Pollution |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Water Science and Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|