Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Wu, Yuexia Hunkeler, Daniel |
| Copyright Year | 2017 |
| Abstract | The relative roles of the sediment grain size/permeability, conduit flow rate and conduit geometry/angle on the hyporheic exchange between a karst conduit and its underlying sediments under low Reynolds numbers (Re) were investigated by means of laboratory experiments and numerical simulations. Two laboratory analogues consisting of siphon structured glass tubes (with bend angles of 15 and 45°) were used for the experimental studies. Tracer experiments were performed in each analogue with sediments of variable grain size (0.45 mm, 0.4–0.7 mm, 1 mm) to characterize the transport properties of contaminants originating from the sediments. Numerical simulations were used to probe the exchange flow patterns and exchange flux magnitudes between the conduit and sediment. Tracer experiments demonstrated a zone of forward flow and a zone of reverse flow in the sediments that were independent of grain size, which were reproduced well by numerical simulations. The exchange flux ranged from 0.02% for fine grains to 2% for coarse grains under the experimental flow conditions. A linear relationship between the exchange flux and the conduit Re value, which was independent of the conduit geometry and sediment grain size, was established with numerical simulations. This study demonstrated that sediment grain size/permeability has no influence on the exchange flow patterns; however, relative to the conduit flow rate and conduit geometry/angle, sediment permeability has a much stronger influence on the exchange rate of hyporheic flow.Les rôles respectifs de la granulométrie du sédiment/ perméabilité, du débit dans le conduit et de la géométrie / angle des conduits lors de l 'échange hyporhéique entre un conduit karstique et ses sédiments sous-jacents pour de faibles nombres de Reynolds (Re) ont été étudiés à l'aide d 'expériences de laboratoire et de simulations numériques. Deux analogues de laboratoires consistant en des tubes en verre en forme de siphon (avec des angles de flexion de 15 et 45°) ont été utilisés pour les études expérimentales. Des expériences de traçage ont été réalisées dans chaque analogue avec des sédiments de granulométrie variable (0.45 mm, 0.4–0.7 mm, 1 mm) pour caractériser les propriétés de transport des contaminants provenant des sédiments. Des simulations numériques ont été utilisées pour tester les modalités et l’amplitude des flux d’échange entre le conduit et les sédiments. Les expériences de traçage ont démontré l’existence d’une zone d'écoulement amont et une zone d'écoulement inverse dans les sédiments qui étaient indépendants de la granulométrie, et qui ont été bien reproduites par les simulations numériques. Le flux d'échange variait entre 0.02% pour les grains fins et 2% pour les grains grossiers dans les conditions d'écoulement expérimental. Une relation linéaire entre le flux d'échange et la valeur Re du conduit, qui était indépendante de la géométrie du conduit et de la granulométrie des sédiments, a été établie à l’aide des simulations numériques. Cette étude a démontré que la granulométrie / perméabilité des sédiments n'a aucune influence sur les modalités de flux d’échange. Cependant, par rapport au débit du conduit et à la géométrie / angle du conduit, la perméabilité des sédiments a une influence beaucoup plus forte sur le taux d’échange du flux hyporhéique.Se investigaron los roles relativos del tamaño del grano del sedimento/ permeabilidad, el caudal del conducto y la geometría / ángulo del conducto en el intercambio hiporreico entre un conducto kárstico y sus sedimentos subyacentes con un número Reynolds (Re) bajo mediante experimentos de laboratorio y simulaciones numéricas. Para los estudios experimentales se utilizaron dos análogos de laboratorio consistentes en tubos de vidrio estructurados con sifón (con ángulos de curvatura de 15 y 45°). Se realizaron experimentos con trazadores en cada uno de los análogos con sedimentos de tamaño de grano variable (0.45 mm, 0.4–0.7 mm, 1 mm) para caracterizar las propiedades de transporte de contaminantes procedentes de los sedimentos. Se utilizaron simulaciones numéricas para investigar los patrones de intercambio de flujo y para intercambiar las magnitudes de flujo entre el conducto y el sedimento. Los experimentos con trazadores demostraron una zona de flujo directo y una zona de flujo inverso en los sedimentos eran independientes del tamaño del grano, los cuales se reprodujeron bien mediante simulaciones numéricas. El flujo de intercambio osciló entre el 0.02% para los granos finos y el 2% para los granos gruesos en las condiciones de flujo experimental. Se estableció una relación lineal entre el flujo de intercambio y el valor del conducto Re, que era independiente de la geometría del conducto y del tamaño del grano de sedimento, con simulaciones numéricas. Este estudio demostró que el tamaño de los granos de sedimento / permeabilidad no tiene influencia en los patrones del flujo de intercambio. Sin embargo, en relación con el caudal del conducto y la geometría / ángulo del conducto, la permeabilidad del sedimento tiene una influencia mucho más fuerte sobre la tasa de cambio del flujo hiporreico.通过室内模拟试验和数值模拟研究了沉积物粒径/渗透率、管道流速和管道几何形态/弯道角度在低雷诺数流条件下对岩溶管道和沉积物之间潜流交换的影响作用。试验中所用的两个物理模型是虹吸管形态的玻璃弯管(弯道角度分别为15度和45度)。在两个弯管物理模型中,分别用粒径为0.45、0.4–0.7和1毫米的沉积物进行示踪试验来模拟研究沉积物中污染物迁移的特征。此外,利用数值模型进一步模拟研究管道和沉积物之间交换流的模式和交换通量。示踪试验和数值模拟的结果一致表明:沉积物中交换流呈正向和逆向两个封闭流场,并且,交换流的空间模式和尺度跟沉积物的粒径大小无关。试验条件下的交换通量在细粒和粗粒沉积物中分别是管道流量的0.02%和2%。数值模拟结果表明,无论管道几何形态和沉积物粒径大小,交换通量和管道雷诺数都呈线性相关。该研究表明,沉积物粒径大小/渗透率对交换流的流场模式没有影响。然而,相比管道流速和几何形态/弯道角度,沉积物的渗透率对潜流交换通量有更强烈的影响。O papel relativo da granulometria do sedimento/permeabilidade, taxa de fluxo no conduto e geometria do conduto/ângulo no intercambio hiporreico entre um conduto cárstico e sedimentos subjacentes sob baixo número de Reynouds (Re) foram investigados por meio de experimentos de laboratórios e simulação numérica. Dois experimentos análogos formados por sifão estruturado em tubos de vidro (com ângulo de dobra de 15 e 45°) foram usados para o estudo experimental. Experimentos de traçadores foram realizados em cada analogia com sedimentos de granulometria variada (0.45 mm, 0.4–0.7 mm, 1 mm) para caracterizar as propriedades de transporte de contaminantes originários dos sedimentos. As simulações numéricas foram usadas para investigar o intercambio do fluxo principal e a magnitude do fluxo de troca entre o conduto e o sedimento. Os experimentos de traçadores demonstraram uma zona de fluxo direto e uma zona de fluxo reverso nos sedimentos que foram independentes da espessura do grão, reproduzidas adequadamente por simulação numérica. O fluxo de troca variou de 0.02% para grãos finos a 2% para grãos grosseiros sob condições experimentais de fluxo. Uma relação linear entre o fluxo de troca e o valor Re do conduto, que foi independente da geometria do conduto e espessura do grão, foi estabelecido com simulação numérica. Este estudo demonstrou que a espessura do sedimento/permeabilidade não influenciou no principal fluxo de troca. Contudo, em relação a taxa de fluxo do conduto e sua geometria/ângulo, permeabilidade sedimentar tem uma influência mais forte na taxa de intercâmbio do fluxo hiporreico. |
| Starting Page | 787 |
| Ending Page | 798 |
| Page Count | 12 |
| File Format | |
| ISSN | 14312174 |
| Journal | Hydrogeology Journal |
| Volume Number | 25 |
| Issue Number | 3 |
| e-ISSN | 14350157 |
| Language | Portuguese |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2017-01-17 |
| Publisher Institution | International Association of Hydrogeologists |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Hyporheic exchange Karst Laboratory experiments Exchange rate Reynolds numbers Hydrogeology Hydrology/Water Resources Geology Water Quality/Water Pollution Geophysics/Geodesy Waste Water Technology Water Pollution Control Water Management Aquatic Pollution |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Water Science and Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|