Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Engström, Emma Mörtberg, Ulla Karlström, Anders Mangold, Mikael |
| Copyright Year | 2016 |
| Abstract | This study developed methodology for statistically assessing groundwater contamination mechanisms. It focused on microbial water pollution in low-income regions. Risk factors for faecal contamination of groundwater-fed drinking-water sources were evaluated in a case study in Juba, South Sudan. The study was based on counts of thermotolerant coliforms in water samples from 129 sources, collected by the humanitarian aid organisation Médecins Sans Frontières in 2010. The factors included hydrogeological settings, land use and socio-economic characteristics. The results showed that the residuals of a conventional probit regression model had a significant positive spatial autocorrelation (Moran’s I = 3.05, I-stat = 9.28); therefore, a spatial model was developed that had better goodness-of-fit to the observations. The most significant factor in this model (p-value 0.005) was the distance from a water source to the nearest Tukul area, an area with informal settlements that lack sanitation services. It is thus recommended that future remediation and monitoring efforts in the city be concentrated in such low-income regions. The spatial model differed from the conventional approach: in contrast with the latter case, lowland topography was not significant at the 5% level, as the p-value was 0.074 in the spatial model and 0.040 in the traditional model. This study showed that statistical risk-factor assessments of groundwater contamination need to consider spatial interactions when the water sources are located close to each other. Future studies might further investigate the cut-off distance that reflects spatial autocorrelation. Particularly, these results advise research on urban groundwater quality.Cette étude a développé une méthodologie pour évaluer du point de vue statistique les mécanismes de contamination des eaux souterraines. Elle met l’accent sur la pollution microbienne des eaux dans des régions à faible revenu. Les facteurs de risque pour la contamination fécale des eaux souterraines alimentation les sources d’alimentation en eau potable sont évalués pour le cas d’étude de Juba, dans le Sud Soudan. Cette étude est basée sur le dénombrement des coliformes thermotolérants dans les échantillons d’eau de 129 sources, recueillis par l’organisation d’aide humanitaire Médecins Sans Frontières en 2010. Les facteurs comprennent les paramètres hydrogéologiques, l’occupation du sol et les caractéristiques socio-économiques. Les résultats montrent que les résidus d’un modèle classique de régression par probit présentaient une autocorrélation spatiale positive significative (Moran’s I = 3.05, I-stat = 9.28). Par conséquent, un modèle spatial a été développé avec une meilleure qualité d’ajustement aux observations. Le facteur le plus significatif de ce modèle (valeur de p 0.005) était la distance entre une source d’eau et la zone de Tukul la plus proche, une zone où les établissements informels manquent de services d’assainissement. Il est donc recommandé de concentrer les efforts en matière de futurs assainissements et de suivi dans la ville, dans ces régions à faible revenu. Le modèle spatial différait de l’approche classique: contrairement à ce dernier cas, la topographie des plaines n’était pas significative au niveau de 5%, la valeur de p étant de 0.074 dans le modèle spatial et de 0.040 dans le modèle classique. Cette étude a montré que les évaluations statistiques des facteurs de risque des contaminations des eaux souterraines doivent tenir compte des interactions spatiales lorsque les sources d’eau sont situées à proximité l’une de l’autre. Les études futures pourraient examiner la distance de coupure, qui reflète l’autocorrélation spatiale. En particulier, ces résultats apportent des conseils sur la recherche de la qualité de eaux souterraines en milieu urbain.Este estudio desarrolló una metodología para la evaluación estadística de los mecanismos de contaminación del agua subterránea. Se centró en la contaminación microbiana del agua en las regiones de bajos recursos. Los factores de riesgo para la contaminación fecal de fuentes de agua potable alimentadas con agua subterránea fueron evaluados en un caso de estudio en Juba, Sudán del Sur. El estudio se basó en los recuentos de coliformes termotolerantes en muestras de agua de 129 fuentes recolectadas por la organización de ayuda humanitaria Médecins Sans Frontières en 2010. Los factores incluyeron los entornos hidrogeológicos, el uso del suelo y las características socioeconómicas. Los resultados mostraron que los residuos de un modelo convencional de regresión probit tenían una autocorrelación espacial positiva significativa (I de Moran = 3.05, I-stat = 9.28). Por lo tanto, se desarrolló un modelo espacial que tenía mejor bondad de ajuste a las observaciones. El factor más significativo en este modelo (valor de p 0.005) fue la distancia de una fuente de agua a la zona de Tukul más cercana, un área con asentamientos informales que carecen de servicios de saneamiento. Por lo tanto, se recomienda que los esfuerzos futuros de remediación y monitoreo en la ciudad se concentren en esas regiones de bajos recursos. El modelo espacial difiere del enfoque convencional: en contraste con este último caso, la topografía de las tierras bajas no fue significativa al nivel de 5%, ya que el valor de p fue 0.074 en el modelo espacial y 0.040 en el modelo tradicional. Este estudio mostró que las evaluaciones estadísticas del factor de riesgo de la contaminación del agua subterránea deben considerar las interacciones espaciales cuando las fuentes de agua están ubicadas próximas unas de otras. Estudios futuros podrían investigar aún más la distancia de corte, que refleja la autocorrelación espacial. En particular, estos resultados aconsejan sobre la investigación en la calidad del agua subterránea urbana.本研究提出了统计学上评价地下水污染机理的方法。这种方法重点关注低收入地区的微生物污染。在南苏丹朱巴地区一个研究案例中评估了地下水饮用水源的粪便污染风险因素。研究基于来自129个源点的水样中耐热大肠杆菌的计数,这些水样是2010年由人道援助组织Médecins Sans Frontières采集的。风险因素包括水文地质背景、土地利用和社会经济特征。结果显示,常规概率单位回归模型的残差有重要的空间正自相关(Moran’s I = 3.05, I-stat = 9.28)。因此,开发了具有对观测结果有拟合优度的空间模型。这个模型中最重要的因素是(p-值 0.005)水源到最近的Tukul地区,这个地区为非正式的居住点,缺乏卫生设施。因此建议,城市将来的污染整治和监测应集中在这样的低收入地区。空间模型不同于常规方法:与后者情况相比,低地地形在5%的水平上并不重要,因为p-值在空间模型中为0.074,在传统模型中为0.040。这项研究显示,当水源彼此距离很近时,地下水污染统计学上的风险因素评价需要考虑空间相互作用。未来的研究可能进一步调查截止距离,截至距离反映空间自相关。尤其是,这些结果建议对城市地下水水质进行研究。Este estudo desenvolveu metodologia para avaliar estatisticamente os mecanismos de contaminação das águas subterrâneas. Concentrou-se na poluição microbiana da água em regiões de baixa renda. Fatores de risco para contaminação fecal de fontes de água potável supridas com água subterrânea foram avaliados em um estudo de caso em Juba, no Sudão do Sul. O estudo foi baseado em contagens de coliformes termotolerantes em amostras de água de 129 fontes, coletadas pela organização de ajuda humanitária Médicos Sem Fronteiras em 2010. Os fatores incluíram cenários hidrogeológicos, uso da terra e características socioeconômicas. Os resultados mostraram que os resíduos de um modelo de regressão probit convencional tiveram uma autocorrelação espacial positiva significativa (Moran’s I = 3.05, I stat = 9.28). Assim, desenvolveu-se um modelo espacial que apresentava o melhor acoplamento às observações. Portanto, desenvolveu-se um modelo espacial que apresentava melhor qaulidade de ajuste às observações. O fator mais significativo neste modelo (valor-p 0.005) foi a distância de uma fonte de água para a área mais próxima de Tukul, uma área com assentamentos informais que não têm serviços de saneamento. Recomenda-se que remediações futuras e esforços de monitoramento na cidade sejam concentrados em tais regiões de baixa renda. O modelo espacial diferiu da abordagem convencional: em contraste com o último caso, a topografia das planícies não foi significativa ao nível de 5%, já que o valor-p foi de 0.074 no modelo espacial e de 0.040 no modelo tradicional. Este estudo mostrou que as avaliações estatísticas de fatores de risco de contaminação das águas subterrâneas precisam considerar interações espaciais quando as fontes de água estão localizadas próximas umas das outras. Estudos futuros podem investigar mais a distância de corte, que reflete a autocorrelação espacial. Particularmente, estes resultados recomendam pesquisas sobre a qualidade das águas subterrâneas urbanas. |
| Starting Page | 1077 |
| Ending Page | 1091 |
| Page Count | 15 |
| File Format | |
| ISSN | 14312174 |
| Journal | Hydrogeology Journal |
| Volume Number | 25 |
| Issue Number | 4 |
| e-ISSN | 14350157 |
| Language | Portuguese |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2016-12-13 |
| Publisher Institution | International Association of Hydrogeologists |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Sub-Saharan Africa Health Microbial processes Statistical modeling Urban groundwater Hydrogeology Hydrology/Water Resources Geology Water Quality/Water Pollution Geophysics/Geodesy Waste Water Technology Water Pollution Control Water Management Aquatic Pollution |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Water Science and Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|