Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Wellman, Tristan P. Voss, Clifford I. Walvoord, Michelle A. |
| Copyright Year | 2013 |
| Abstract | In cold regions, hydrologic systems possess seasonal and perennial ice-free zones (taliks) within areas of permafrost that control and are enhanced by groundwater flow. Simulation of talik development that follows lake formation in watersheds modeled after those in the Yukon Flats of interior Alaska (USA) provides insight on the coupled interaction between groundwater flow and ice distribution. The SUTRA groundwater simulator with freeze–thaw physics is used to examine the effect of climate, lake size, and lake–groundwater relations on talik formation. Considering a range of these factors, simulated times for a through-going sub-lake talik to form through 90 m of permafrost range from ∼200 to > 1,000 years (vertical thaw rates < 0.1–0.5 m yr$^{−1}$). Seasonal temperature cycles along lake margins impact supra-permafrost flow and late-stage cryologic processes. Warmer climate accelerates complete permafrost thaw and enhances seasonal flow within the supra-permafrost layer. Prior to open talik formation, sub-lake permafrost thaw is dominated by heat conduction. When hydraulic conditions induce upward or downward flow between the lake and sub-permafrost aquifer, thaw rates are greatly increased. The complexity of ground-ice and water-flow interplay, together with anticipated warming in the arctic, underscores the utility of coupled groundwater-energy transport models in evaluating hydrologic systems impacted by permafrost.Dans les régions froides, les systèmes hydrologiques présentent, à l’intérieur de zones contrôlées par le permafrost de façon pérenne ou saisonnière, des surfaces libres de glace (taliks) renforcées par l’écoulement souterrain. La simulation du développement d’un talik qui suit la formation d’un lac sur des bassins versants modelés par suite dans le Yukon Flat de l’Alaska intérieur (USA) fournit un aperçu sur l’interaction entre l’écoulement souterrain et la distribution de la glace. Le simulateur d’écoulement souterrain SUTRA avec physique du gel–dégel est utilisé pour examiner l’effet du climat, de la dimension du lac, et de la relation lac-eau souterraine sur la formation du talik. Considérant une série de ces facteurs, les temps simulés pour l’établissant d’un talik infra-lacustre à travers 90 m de pergélisol s’échelonnent de ∼200 à >1,000 années (taux de dégel vertical <0.1–0.5 m an$^{−1}$). Les cycles saisonniers de température le long des rivages du lac impactent l’écoulement supra-pergélisol et les processus cryologiques tardifs. Un climat plus chaud accélère un dégel complet du pergélisol et renforce l’écoulement saisonnier dans l’horizon supra-pergélisol. Avant la formation d’un talik ouvert, le dégel du pergélisol infra-lacustre est précédé de la conduction de chaleur. Quand les conditions hydrauliques induisent un écoulement ascendant ou descendant entre le lac et l’aquifère infra-pergélisol, les taux de dégel sont grandement augmentés. La complexité de l’interaction glace-sol et écoulement de l’eau, avec simultanément le réchauffement anticipé de l’arctique, souligne l’utilité des modèles d’échange couplant eau-énergie dans la compréhension des systèmes hydrologiques impactés par le pergélisol.En regiones frías, los sistemas hidrológicos poseen zonas libres de hielo, estacionales y perennes (taliks), dentro de áreas de permafrost que controlan y se incrementan por el flujo de agua subterránea. La simulación del desarrollo del talik que le sigue a la formación del lago en las cuencas modeladas en el Yukon Flats del interior de Alaska (EEUU) provee ideas sobre la interacción acoplada entre el flujo de agua subterránea y la distribución del hielo. El simulador de agua subterránea SUTRA con la física de la congelación–descongelación se usa para examinar el efecto del clima, tamaño del lago, y las relaciones lago – agua subterránea en la formación del talik. Teniendo en cuenta una serie de estos factores, los tiempos simulados con un pasaje en el sub-lago del talik a través de 90 m de permafrost varía entre ∼200 a >1000 años (tasa de descongelamiento vertical <0.1–0.5 m yr$^{−1}$). Los ciclos de temperaturas estacionales a lo largo de las márgenes del lago impactan al flujo supra-permafrost y a la última etapa de los procesos criológicos. Los climas cálidos aceleran el descongelamiento completo del permafrost y aumenta el flujo dentro de la capa del supra-permafrost. Antes de abrir la formación del talik, el deshielo del permafrost del sub lago es dominado por la conducción del calor. Cuando las condiciones hidráulicas inducen el flujo hacia arriba o hacia abajo entre el lago y el acuífero sub-permafrost, las tasas de deshielo son mucho mayores. La complejidad del hielo en el terreno y el flujo de agua interaccionan, conjuntamente con calentamientos en el ártico, lo cual pone de relieve la utilidad de los modelos acoplados de transporte de agua subterránea – energía en la evaluación de sistemas hidrológicos impactados por el permafrost.在寒冷的地区,水文系统占据着位于永久冻土地区中的季节性和多年性不冻区(层间不冻层),永久冻土层控制着地下水流并在水流的作用下得到强化。湖泊在流域形成,首先对阿拉斯加州(美国)内部的育空平原的流域进行了模拟,随后进行的层间不冻层演化的模拟显示,地下水流与冰的分布具有耦合的相互作用。SUTRA地下水模拟器与冻融物理学相结合,用来检测气候、湖泊规模和湖泊-地下水相互关系对层间不冻层形成的影响。考虑到这一系列的因素,为了形成通过90m的永久冻土层且贯穿湖底的层间不冻层,模拟的时间段从大约200年变化到1000年以上(垂直的解冻速率 < 0.1–0.5 m yr$^{−1}$)。湖泊边缘的季节性温度循环影响永久冻土层之上的水流及后期的低温逻辑过程。温暖的气候加速了完全永久冻土层的解冻,增强了永久冻土层之上岩层内的季节性水流。在开放的居间不冻层形成之前,湖泊之下的永久冻土层的解冻主要受热传导控制。当水力条件导致在湖泊和永久冻土层下的含水层间形成上升水流或下降水流时,解冻的速率将大幅提高。地下冰层与水流相互作用的复杂性,加上北极地区所预期的气候变暖,强调了地下水-能量迁移耦合模型在评估受永久冻土层影响的水文系统时的实用性。Nas regiões frias, os sistemas hidrológicos possuem zonas sazonal ou perenemente livres de gelo no seio de permafrost (talik) que controlam ou são potenciadas pelo escoamento de água subterrânea. A simulação do desenvolvimento de taliks que se sucedem à formação de lagos em bacias hidrográficas, modelados segundo as ocorrências em Yukon Flats, no interior do Alaska (EUA), permite perceber a interação acoplada entre o escoamento de água subterrânea e a distribuição do gelo. Foi usado o modelo de simulação de água subterrânea SUTRA incluindo a física da congelação-fusão para examinar o efeito do clima, da dimensão do lago e as relações lago-água subterrânea na formação do talik. Considerando uma gama destes fatores, os tempos simulados para se formar um talik sub-lacustre em 90 m de permafrost variam de ∼200 a >1,000 anos (velocidade de descongelação vertical <0.1–0.5 m ano$^{−1}$). As oscilações de temperatura sazonal ao longo da margem do lago afetam o escoamento acima do permafrost e os processos criológicos tardios. Um clima mais quente acelera a fusão completa do permafrost e acelera o escoamento sazonal dentro da camada superior do permafrost. Antes da formação do talik aberto à superfície, a fusão do permafrost sub-lacustre é controlada por condução de calor. As taxas de fusão aumentam acentuadamente quando as condições hidráulicas induzem fluxo ascendente ou descendente entre o lago e o aquífero inferior ao permafrost. A complexidade da inter-relação entre o gelo do solo e o fluxo de água, em conjunto com o previsto aquecimento no ártico, sublinha a utilidade dos modelos acoplados de transporte de água subterrânea e de energia na avaliação de sistemas hidráulicos impactados por permafrost. |
| Starting Page | 281 |
| Ending Page | 298 |
| Page Count | 18 |
| File Format | |
| ISSN | 14312174 |
| Journal | Hydrogeology Journal |
| Volume Number | 21 |
| Issue Number | 1 |
| e-ISSN | 14350157 |
| Language | Portuguese |
| Publisher | Springer-Verlag |
| Publisher Date | 2013-01-23 |
| Publisher Institution | International Association of Hydrogeologists |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Cold-regions Permafrost Groundwater modeling Climate change Alaska (USA) Hydrogeology Geology Waste Water Technology Water Pollution Control Water Management Aquatic Pollution |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Water Science and Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|