Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Liu, Guixia Chen, Yingjie Sun, Lu Zhang, Chen Zhuang, Shulin Li, Xiao Li, Weihua Tang, Yun Lee, Philip W. |
| Copyright Year | 2015 |
| Abstract | Aquatic toxicity is an important endpoint in the evaluation of chemically adverse effects on ecosystems. In this study, in silico models were developed for the prediction of chemical aquatic toxicity in different fish species. Firstly, a large data set containing 6422 data points on aquatic toxicity with 1906 diverse chemicals was constructed. Using molecular descriptors and fingerprints to represent the molecules, local and global models were then developed with five machine learning methods based on three fish species (rainbow trout, fathead minnow and bluegill sunfish). For the local models, both binary and ternary classification models were obtained for each of the three fish species. For the global models, data of all the three fish species were used together. The predictive accuracy of both the local and global models was around 0.8 for the test sets. Moreover, data of the sheepshead minnow were used as an external validation set. For the best local model (model 2), the predictive accuracy was 0.875 for the sheepshead minnow, while for the best global model (model 14), the predictive accuracy was 0.872 for the sheepshead minnow. The FN compounds in model 2 and model 14 were 18 and 10, respectively. Hence, model 14 was the best model, and thus could predict the toxicity of other fish species’. Furthermore, information gain and ChemoTyper methods were used to identify toxic substructures, which could significantly correlate with chemical aquatic toxicity. This study provides critical tools for an early evaluation of chemical aquatic toxicity in an environmental hazard assessment. |
| Starting Page | 452 |
| Ending Page | 463 |
| Page Count | 12 |
| File Format | HTM / HTML PDF |
| ISSN | 2045452X |
| Volume Number | 4 |
| Issue Number | 2 |
| Journal | Toxicology Research |
| DOI | 10.1039/c4tx00174e |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Sheepshead minnow Training, test, and validation sets Machine learning Rainbow trout Fathead minnow Bluegill |
| Content Type | Text |
| Resource Type | Article |
| Subject | Health, Toxicology and Mutagenesis Toxicology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|